DOCUMENT RESUME

ED 132 179	95	TH 00 5 894
AUTHOR TITLE	Coles, Gary J.; Chalupsky, Innovative School Environme Project LONGSTEP Final Beno	Albert B. nts and Student Outcomes.
INSTITUTION	American Institutes for Res Sciences, Palo Alto, Calif.	earch in the Behavioral
SPONS AGENCY REPORT NO	Office of Education (DHEW), AIR-21400-9/76-FR-II	Washington, D.C.
PUB DATE	Sep 76	
CONTRACT	0EC-0-70-4789	- 1
NOTE	93p.; For related documents TM 005 920-922	, see TM 005 891-896 and
EDRS PRICE	MF-\$0.83 HC-\$4.67 Plus Post	age.
DESCRIPTORS	*Academic Achievement; Achi Tests; *Educational Innovat Students; Elementary Second Arts; *Longitudinal Studies Attitudes; *School Environm Studies; Statistical Analys	evement Gouns; Achievement ion; Elementary School ary Education; Language ; Mathematics; *School ent; Sciences; Social is; Student Attitudes
IDENTIFIERS '	Longitudinal Study of Educa	tional Practices: *Project

ABSTRACT

ાal.

LONGSTEP

The general emphasis of Project LONGSTEP was on the identification of changes in student achievement that occur as a result of exposure to intensive educational innovation. This volume explores the possibility that growth in student achievement test performance and positive changes in school-related attitudes were highly associated with highly innovative school environments. Both student outcome scores and treatment data in language arts, mathematics, social stud is, and science were aggregated to the school level so that the more general question of the relation between school environments and outcomes could be explored. Important differences among schools with respect to the achievement test performance and attitudes of their students existed in a number of samples analyzed. Greater average growth in achievement test performance and positive changes in attitude were not associated with school-level emphasis on innovatic and individualization. Measures of growth in achievement were typ: 11y not related to quantity of schooling indices. There was, however, a tendency for these indices to be positively related to student attitudes toward schooling. In general, changes in average student attitudes toward school were not significantly related to average growth in achievement. However, the majority of correlations were positive. In respect to the primary hypothesis, the results of this study indicate that innovative school environments did not demonstrate a substantially positive impact on either achievement or student attitudes. "Data Collection Instruments and Guidelines" developed for Project LONGSTEP referenced in Vol. I, Chapter II, Section C, will be accessioned TM 005 987 in RIEMAY77. (RC)

Documents acquired by ERIC include many informal unpublished materials not available from other sources. ERIC makes every effort to obtain the best copy available. Nevertheless, items of marginal reproducibility are often encountered and this affects the quality of the microfiche and hardcopy reproductions ERIC makes available via the ERIC Document Reproduction Service (EDRS).

INNOVATIVE SCHOOL ENVIRONMENTS AND STUDENT OUTCOMES

Project LONGSTEP Final Report

Volume II

U.S. DEPARTMENT OF HEALTH. EDUCATION & WELFARE NATIONAL INSTITUTE OF EDUCATION

ED132779

THIS DOCUMENT HAS BEEN REPRC DUCED EXACTLY AS RECEIVED FROM THE PERSON OR ORGANIZATION ORIGIN-ATING IT POINTS OF VIEW OR OPINIONS STATED DO NGI NECESSARILY REPRE-SENT OF FICIAL NATIONAL INSTITUTE OF EDUCATION POSITION OR POLICY

C

C.

TWOOD

ERIC

Palo Alto, California

OR RESEARCH

ERICAN INST

AIR-21400-9/76-FR-II

INNOVATIVE SCHOOL ENVIRONMENTS AND STUDENT OUTCOMES

Gary J. Coles Albert B. Chalupsky

PROJECT LONGSTEP FINAL REPORT

VOLUME II

Prepared for

Office of Planning, Budgeting and Evaluation Office of Education Washington, D. C. 20202

> American Institutes for Research Palo Alto, California 94302

> > September 1976

The research reported herein was performed pursuant to Contract No. OEC-0-70-4789 with the U. S. Office of Education, U. S. Department of Health, Education, and Welfare.' Contractors undertaking such projects under Government sponsorship are encouraged to express freely their professional judgment in the conduct of the project. Points of view or opinions stated do not, therefore, necessarily represent official Office of Education position or policy.

ABSTRACT

This report is one of a series developed as part of the Longitudinal Study of Educational Practices (Project LONGSTEP). The general emphasis of Project LONGSTEP was on the identification of changes in student achievement that occur as a result of exposure to <u>intensive</u> educational innovation. The specific purpose of this volume was to explore the possibility that growth in student achievement test performance and positive changes in attitudes toward school were highly associated with school environments in which there was, on the average, a great deal of emphasis on innovation.

Previous Project LONGSTEP reports examined the relationship between achievement test performance in mathematics and reading/language and intensive educational innovation in those subject-matter areas. The analyses conducted for this report, however, were not designed to assess the impact of specific educational treatments on individual students. Rather, both student outcome scores and treatment data in all subject matter areas (language arts, mathematics, social studies and science) were aggregated to the school level and interrelated so that the more general question of the relation between school environments and outcomes could be explored.

The findings of this study suggest that

- Important differences among schools with respect to the achievement test performance and attitudes of their students existed in a number of LONGSTEP samples analyzed.
- Greater average growth in achievement test performance and positive changes in atticude were <u>not</u> associated with school-level emphasis on innovation and individualization.
- Measures of growth in achievement were typically not related to our key quantity of schooling indices. There was, however, a tendency for these indices to be positively related to student attitudes toward schooling.

• In general, changes in average student attitudes toward school were <u>not</u> significantly related to average growth in achievement. However, the majority of correlations were positive.

In respect to our primary hypothesis, the results of this study indicate that innovative school environments did <u>not</u> demonstrate a substantially positive impact on either achievement or student attitudes. These findings essentially support the student-level findings reported in Volume I and the Volume I Supplement. The pattern of results leads us to conclude that important differences among schools in the LONGSTEP sample did occur but that such differences were not highly associated with innovative school environments.

5

ii

مرينية . سرينية في ا

ACKNOWLEDGMENTS

- 24

The conduct of a project as large and complex as LONGSTEP requires the assistance of a large number of agencies and individuals. The preface to Volume I of the final report attempted to acknowledge these many project contributions. The present report obviously owes its existence to all of the project contributors, and to them we again express our gratitude. In this section we would like to offer our sincere appreciation to the following individuals who made special contribution to Volume II:

Bruce E. Everett and David E. Gross for their processing of the student-level data analyzed;

Marion F. Shaycoft, for her critical review of the manuscript; and Carolyn L. Davis, for her preparation of the manuscript.

6

iii

TABLE OF CONTENTS

		.
	ABSTRACT	Page No.
	ACKNOWLEDGMENTS	• .
I.	INTRODUCTION TO PROJECT LONGSTEP	1
II.	OBJECTIVES AND ANALYTIC STRATEGY FOR THIS VOLUME	4
III.	RESULTS AND DISCUSSION	13
	Magnitude of School Differences	13
	Associations Among Outcomes	13
· · .	School Outcomes and Quantity of Schooling	15
	School Outcomes and Innovative Treatment Environments	15
	School Outcomes and Resource Variables	18
	Discussion	18
IV.	SUMMARY OF FINDINGS	23
	REFERENCES	24 ·
	ATTACHMENT A	
	ATTACHMENT B	
× ⁴	List of Tables	· · ·
<u>No.</u>		Page No.
1	Numbers of Students (and Schools) per Analysis Sample	
	Admoers of Students (and Schools) per Analysis Sample	0
2	Analysis Variables Compiled for the Volume II Report .	. 10
3	Proportions of Outcome Variance Uniquely Associated wit School Membership During the 1972-73 School Year	h • 1 <u>4</u>
4	School-Level Correlations Between the Adjusted Mean Attitude Composite Score and the CTBS Adjusted Posttest Means	. 16
5	School-Level Correlations of Key Quantity of Schooling Indices with Selected Outcomes	. 17
, 6	School-Level Correlations Between Selected Adjusted Outcomes and Level of Innovation and Degree of Individu ization	al- • 19
	(continued)
	iv	-

List of Tables (continued)

	No.	D	
· ·		Page No.	
\mathbf{X}	7 School-Level Correlations Between Selected Adju Outcomes and Teacher/Student Contact Hour Ratio	sted 20	i
· · ·	8 School-Level Correlations of Selected Adjusted for Grade 3 with the Key School Environment Ind	Outcomes ices -	
	With/Without High Achieving Schools	22	
			•
		n.¢	
•			•
		/	•
			•
		9 	
		• •	
			•
·		· · · ·	
-			
	र ह		•
	energia de la constante de la c La constante de la constante de La constante de la constante de	-	
			•
		•	1
			•
· · ·		· · · ·	
	· · · · · · · · · · · · · · · · · · ·		
		1	•
• • •			
.• • •		• •	
	, j	· · ·	
		•	
		•	
•	v		•
•			
· · ·	8		
Full Text Provided by ERIC		-	

I. INTRODUCTION TO PROJECT LONGSTEP

Educators and noneducators alike have shown a growing awareness of the lack of--and need for--evidence as to whether or not innovative educational practices are indeed better than the more traditional approaches. In response to this need, the U. S. Office of Education in 1969 awarded a contract to the American Institutes for Research to develop a design for a study of the effectiveness of highly intensive; innovative educational practices on students in grades 1 through 12. The general emphasis of the resulting Project LONGSTEP (the Longitudinal Study of Educational Practices) was on the identification of changes in student achievement that occur as a result of exposure to <u>intensive</u> educational innovation, "intensive innovation" meaning the implementation of a new program encompassing a significant proportion of students, entailing a major alteration of school procedures, and involving a high investment of resources.

Specific objectives of Project LONGSTEP were to design a system to study the characteristics underlying innovative educational approaches; to establish a large-scale data base of program characteristics and student outcomes for a select sample of educational programs involving intensive and highly innovative education practices; to determine longitudinally the impact of such innovation upon student performance and attitudes; and to attempt to identify the dimensions of the components that exhibited the greatest impact on student outcomes.

A complete discussion of the project design and data collection, the scaling of the analysis variables, and the methods and findings for an analysis of innovative emphasis in language arts and arithmetic is contained in Volume I and the Volume I Supplement of the final report (Coles, Chalupsky, Everett, Shaycoft, Rodabaugh and Danoff, 1976; Coles and Chalupsky, 1976). This Volume II report has been prepared with the expectation that the reader is familiar with the general study design and the scaling of the study's variables as reported in Volume I and the Volume I Supplement. However, to familiarize the reader with these previous reports, this section will end with a brief description of the objectives of Volume I and the Volume I Supplement as well as a summary of the methods used and

the major findings. (Readers who are familiar with the analytic methods and findings presented in Volume I and its supplement may want to skip the following discussion and turn to Section II.)

The basic objective of the previous analyses of the Project LONESTEP data base was to determine if substantial gains in reading or arithmetic achievement were associated, to any meaningful degree, with exposure to intensive educational innovation in the language arts or arithmetic subject matter areas. Overall differences in achievement growth <u>among</u> analy- ***** sis samples were compared to national norms and also associated with sample differences with respect to (1) pretest, (2) socioeconomic status, (3) innovative emphasis (measured by an index called Level of Innovation), (4) Number of Minutes per Day (in a typical classroom on either language arts or math activities), and (5) Teaching Qualifications (a measure of the experience and qualifications of each student's language arts or math teacher(s)).

An educational growth model was analyzed that related achievement growth to variation with respect to these same variables among treatment groups within each analysis sample. Results across analysis samples (i.e., across grades, cohorts¹ and school years) were compared. So as to utilize a somewhat different methodology to examine the associations between educational treatment attributes and outcomes within analysis samples, a residualized achievement gain score was correlated with Level of Innovation, Number of Minutes per Day, and Teaching Qualifications. The gain score was equal to that part of a student's CTBS² Reading Total or CTBS Arithmetic

¹"Cohort" is a term that is used to identify a given group of students who followed the same grade progression during the three years that the study was implemented. Cohorts are labeled by the grade level of that group of students during Year 1 of the study, the 1970-71 school year. Thus, Cohort 1 refers to all those students who were first-graders during the 1970-71 school year or who were not present in the sample during Year 1 but who would have been first-graders at that time because they were secondgraders in Year 2 or third-graders in Year 3. Similarly, Cohort 4 would identify the students who were in the fourth grade in 1970-71. The term "cohort" was utilized throughout the Project LONGSTEP report to identify student groups because the study's longitudinal design meant that a given group of students would be members of three different grades, the particular grade depending on the particular school year.

²Comprehensive Tests of Basic Skills, 1968 edition, Monterey, California: CTB/McGraw-Hill.

Total posttest score that could not be predicted from the appropriate pretest score and the student's socioeconomic status (SES) level.

Lastly, because procedures based on all students in an analysis sample permitted the examination of only overall or average trends, it was believed possible that innovative emphasis could have been highly related to achievement, but only for a small number of students. Therefore, those students were identified who, for two consecutive school years, achieved much more or much less than was expected on the basis of their pretest and SEF levels. High achievers were then compared with low achievers with respect to the Level of Innovation, Number of Minutes per Day and Teaching Qualifications to which they had been exposed.

This rather diverse set of analytic procedures was used in Volume I and the Volume I Supplement to examine the relationship between reading and arithmetic achievement and program-level innovative emphasis in those subject matter areas. The following major findings were reported.

- The mean reading and arithmetic posttest scores for Project LONGSTEP's sample of fairly innovative schools were <u>not</u> conspicuously farther from national norms than their average pretest scores were from their norms.
- Variation among analysis samples with respect to average reading and arithmetic achievement gains did not tend to be associated in any highly consistent manner with sample differences on mean Level of Innovation, Number of Minutes per Day and Teaching Qualifications.
- Variation in Level of Innovation was not highly associated with reading or arithmetic achievement within Project
 LONGSTEP's analysis samples.
- Variation in Level of Innovation was not positively or consistently related to reading achievement within analysis samples.
- Variation in Level of Innovation appeared to be negatively associated with arithmetic achievement in many samples.

3

• Variation in Teaching Qualifications was not highly or consistently related to reading achievement but was positively associated with small gains in arithmetic achievement.

Additional findings included (1) a trend for reading and arithmetic achievement to decrease between the sixth and seventh grades, (2) a trend for reading and arithmetic gains on the Comprehensive Tests of Basic Skills (CTBS) to be larger in the earlier grades, (3) a trend for the average gains in arithmetic shown by all cohorts except those in senior high school to be larger than mean gains in reading (relative to their respective standard deviations), (4) a trend for the elementary grades (1-6) to be exposed to notably more instruction per day than junior high and high school students with respect to language arts, and (5) notable mean achievement gains, in reading and arithmetic for students who were third-graders during the 1972-73 school year.

II. OBJECTIVES AND ANALYTIC STRATEGY FOR THIS VOLUME

Volume I and the Volume I Supplement examined trends in reading and arithmetic achievement both between and within reading and arithmetic analysis samples and cohorts/grades. Overall findings were that Project LONGSTEP's primary research hypothesis--that substantial gains in reading and arithmetic achievement are positively associated with innovative emphasis in these subject matter areas--was not supported in any general way.

The analyses conducted for these previous reports, however, did not assess the impact of program-level innovative emphasis on student attitudes nor did they examine the impact of the innovativeness of the total school environment on student performance. Procedures implemented for the current report were designed to explore these more general questions concerning the impact of intensive, innovative school environments. Specifically, the objective of this brief report is to explore the possibility that growth in student cognitive achievement and positive changes in attitudes toward school were highly associated with school environments in which there was, on the average, a great deal of emphasis on innovation. The remainder of

ERIC Full East Provided by Felic 4

this chapter contains a summary of the analytic strategy used to achieve this objective. Methods are summarized with respect to each of the questions that were posed concerning the data.

1. What grades were analyzed?

Although Project LONGSTEP collected data from 11 cohorts of students during three consecutive school years (1970-71, 1971-72 and 1972-73), time and cost constraints did not permit analysis of all these data. Furthermore, project staff felt that a judicious sampling of the available grades would be adequate for the exploratory analyses to be conducted. It was decided that achievement growth and changes in attitude during the 1972-73 school year for students who were then in grades 3, 6, 7, 10 and 12³ would allow the proposed analyses of the impact of students' total educational environment to focus on the

- early elementary school years (grade 3)
- late elementary school years (grade 6)
- middle school years or the first year of junior high school (grade 7)
- intermediate high school years (grade 10)
- late high school years (grade 12).

2. How were innovative emphasis and other attributes of the school environment measured?

As noted previously, the objective of the analyses conducted here was to examine the impact of students' total educational environment rather than the impact of the treatment environment in a specific subject matter area. In other words, the analyses to be conducted for this volume were designed to focus on <u>school environments</u> rather than on the <u>specific</u> <u>treatment environments</u> to which individual students were exposed. The essential difference in these two approaches in terms of measures of treatment attributes is that the school environment may be considered an aggregate characteristic of all the Educational Experience Analysis Guide

 3 Students in these grades in 1972-73 were members of Cohorts 1, 4, 5, 8 and 10, respectively.

 13^{-1}

(EdExAG) groups⁴ present in the school. Furthermore, since it was the overall school environment that was of interest, these school-level attributes for a given grade for all subject matter areas (language arts, arithmetic/ mathematics, social studies and science) could be assumed to influence all students in a particular grade within a particular school, regardless of whether or not they are taking a specific subject (language arts, arithmetic/mathematics, social studies and science) and regardless of the specific EdExAG group to which they belonged.

Measures of the school environment for students in grades 3, 6, 7, 10 and 12 were created in two steps. First, all variables of interest were aggregated (separately by grade within school) to the subject matter area level. For example, three EdExAG groups in science for students in grade 10 may have been identified in school A. An aggregate score for science for school A for grade 10, then, would have been computed by averaging each variable of interest across these three groups. Second, a school-level aggregate score on each relevant variable was computed by averaging the four subject matter area aggregate scores pertaining to a given grade within a given school. In terms of the example noted previously, the Level of Innovation aggregate scores for language arts, arithmetic/mathematics, social studies and science for grade 10 in school A would have been averaged.

3. What educational outcomes were analyzed?

Since these analyses were targeted at the impact of the overall school environment, the most appropriate available measure of general cognitive achievement was judged to be the CTBS Battery Total Score. Thus, the Battery Total Expanded Scale Score provided by the test publisher, CTB/ McGraw-Hill, was utilized in all analyses. (Volume I contains a more detailed discussion of the attributes of this "equal interval" test score scale.) In addition, because they had not been included in the analyses

⁴As described thoroughly in Volume I, an instrument called the Educational Experience-Analysis Guide (EdExAG) was used by AIR staff to document the underlying attributes of school practices and procedures. All the students in a given school who were exposed to the same basic programmatic approach, as defined by the items on the EdExAG, were said to belong to the <u>same</u> EdExAG group.

6

conducted for Volume I or for the Volume I Supplement, school differences with respect to growth in a number of subtest areas of the CTBS were also computed. An even more compelling reason for considering these additional cognitive outcomes was the possibility that they might have been influenced differently by the intensive innovations sampled by Project LONGSTEP.⁵ Thus, the Expanded Scale Scores for Reading Vocabulary, Reading Comprehension, Arithmetic Computation, Arithmetic Concepts, and Arithmetic Applications were included in a number of the analyses and summary tables presented in this report.

Lastly, a general measure of school- or education-related attitudes was computed by averaging the following student questionnaire scales: Attitude toward School, Attitude toward Language Arts, Reading Interest, and Attitude toward Math. The resulting score was called the Attitude Composite. As shown in Attachment A, Table A-1, the internal consistency reliability of this four-scale composite index (as measured by Cronbach's coefficient alpha) ranged between .53 and .68. These were judged sufficient, given the nature and probable stability of the attributes being assessed.

It should be noted that the four-scale Attitude Composite could not be computed for students in grade 3 because the version of the student questionnaire pertaining to these students was completed by their teachers and did not contain the items used to construct the four basic attitude scales averaged for the Attitude Composite. Therefore, the Attitude Composite index analyzed for grade 3 students was the three-item scale called Social Facility in Volume I. This scale assessed the extent to which the student made friends easily, was socially aggressive and was confident with **?**adults.

⁵During the early years of Project LONGSTEP it was hypothesized that a general measure of cognitive achievement, like that provided by the Comprehensive Tests of Basic Skills (CTBS), might not be sensitive to the impact that such a diverse set of educational programs had on their students. More specifically, it was argued that some of the items found in the CTBS may have assessed skills that were not relevant given the instructional objectives of a particular program. To explore this issue empirically, information concerning mathematics objectives was collected with respect to a subset of the grades participating in the study. The Project LONGSTEP Final Report: Volume II Appendix Report (separately bound) presents the methods and findings obtained.

4. How were students selected for the analysis samples and how many students were included in each?

Samples of students analyzed for this report were those students who (1) had followed a normal grade progression during their years of participation in Project LONGSTEP, (2) had an SES score, and (3) had a CTBS Battery Total Score from Spring 1972 (the pretest) and from Spring 1973 (the posttest). Students included in the Attitude Composite analyses were also required to have an Attitude Composite score for Spring 1972 (pre-attitude) and for Spring 1973 (post-attitude). Table 1 shows the number of students in the achievement and attitude analyses for grades 3, 6, 7, 8 and 10. The number of different schools is also shown in Table 1.

Numbers of	Students	(and Schools)	per Analysis Sample
Grade		Achievement Analysis	Attitude _* Analyses
3	e.	721 (13)	704 (13)
6	. •	2046 (34)	1766 (30)
7 ,		1852 (19)	1622 (18)
10		1471 (6)	1308 (6)
12		901 (3)	754 (3)

TABLE 1

*Fewer schools were involved in the att**it**ude analyses for grades 6 and 7 because the student questionnaire from which the attitude measure was derived could not be given to students at one participating site.

Due to time and cost restraints, the attributes of students not meeting the selection criteria for these analyses could not be examined. Thus, all inferences presented in this report technically only apply to the particular populations of students of which the analysis samples may be considered representative.

R

5. What attributes of students' total educational environments were of primary concern?

Table 2 shows the school environment measures that were included in the tables prepared for this Volume II of the Project LONGSTEP final report. Outcome measures have also been included in Table 2 so that one table contains a listing of all the measures compiled for these analyses. It should be noted, however, that the primary focus of the analyses presented here was on a subset of the variables shown in Table 2. Therefore, the variables of primary concern have been marked with an asterisk.

6. What method was eased to adjust outcome differences among schools for differences in student input?

Each posttest (or post-attitude) score was regressed⁶ on pretest (or pre-attitude), student SES, and a series of dummy variables encoding school membership. The square of the multiple correlation obtained was then compared with that resulting from the regression of posttest on pretest (or pre-attitude) and SES alone. The difference between the two squared multiple correlations indicated the percent of variance in the posttest (or post-attitude) that could be associated with school membership, after the influence of school membership was statistically adjusted for differences with respect to pretest (or pre-attitude) and SES. In commonality analysis terms (Mayeske, et al., 1972) this difference between squared multiple correlations is called the uniqueness for school membership (relative to the particular prediction model also containing pretest and SES). It should be noted that this procedure is the regression analysis formulation of analysis of covariance and that testing the statistical significance of such a uniqueness is equivalent to testing for differences in adjusted posttest means. Table A-2 in Attachment A shows the square of the multiple correlation of posttest (or post-attitude) with

• the school membership dummy codes alone $[R^{2}(D)]$

⁶The unit of analysis in these regressions was the individual student.

9

TABLE 2

Analysis Variables Compiled for the Volume II Report

Outcome Measures - Cognitive Achievement¹

*CTBS Battery Total Expanded Scale Score CTBS Reading Vocabulary Expanded Scale Score CTBS Reading Comprehension Expanded Scale Score CTBS Arithmetic Computation Expanded Scale Score CTBS Arithmetic Concepts Expanded Scale Score CTBS Arithmetic Applications Expanded Scale Score

<u>Outcome Measures - Attitudinal¹</u>

*Social Facility (Grade 3 only) *Attitude Composite (Grades 6,7,10 and 12)

Student Background

Student Socioeconomic Status (SES)

Mean Quantity of Schooling Measures by School

Percent of School Year prior to the Pretest Percent of School Year prior to the Posttest Number of Days per School Year (Posttest Year) Number of Days Prior to Posttest (Posttest Year) *Number of Minutes per Day²(Posttest Year) *Total Time Before Posttest in Hours² (Posttest Year Only)

Average Treatment Attributes by School³

*Level of Innovation *Degree of Individualization Individualization of Instructional Pace Use of Performance Agreements Utilization of Student Evaluation Scheduling Characteristics Classroom - Group Organization Affective Evaluation Treatment Years for the Grade

Average Resource Variables by School³

School-Classroom Design Use of Materials (based on classroom observation) Classroom Environment (based on classroom observation) Study Arrangements (based on classroom observation) Access to Resources (based on classroom observation) *Teacher/Student Contact Hour Ratio Aide/Student Contact Hour Ratio Volunteer/Student Contact Hour Ratio Teacher Inservice Training

- - -

*Key analysis variables for this report.

¹Collected during Spring 1972 (pretest or pre-attitude) and Spring 1973 (posttest or post-attitude).

²Equal to the average number of hours per day in a typical classroom spent on a given subject (language arts, arithmetic/ mathematics, social studies or science) summed across subject matter areas.

³For the posttest school year. The composition of these scales is discussed fully in Volume I.

⁴Equal to the number of teachers times the number of hours per week spent in a "typical" classroom, times 100 and divided by number of student contact hours per week.

10

- pretest (or pre-attitude) and SES alone [R²(P,S)]
- pretest (or pre-attitude), SES, and the school membership dummy codes [R²(P,S,D)].

Table A-3 in Attachment A shows the raw score regression coefficients for pretest and for SES in the regression equation containing pretest, SES, and the school membership codes as predictors of posttest. These coefficients are the familiar within-group (i.e., within-schools here) regression coefficients (pooled) used in analysis of covariance to adjust the outcome or dependent variable means. The appropriate formula for adjusting posttest school means is,

$$\overline{\overline{Y}}_{i}' = \overline{\overline{Y}}_{i} - b_{w_{x}}(\overline{\overline{X}}_{i} - \overline{\overline{\overline{X}}}) - b_{w_{z}}(\overline{\overline{Z}}_{i} - \overline{\overline{\overline{Z}}})$$

where,

- \overline{Y}_{i} = adjusted posttest mean for school i;
- \overline{Y}_{i} = unadjusted posttest mean for school i;
- bwx,bwz = pooled within-schools raw score regression coefficents for variable X (pretest) and for variable Z (SES) obtained by regressing posttest (Y) on pretest (X), SES (Z), and the dummy variables encoding school membership;
 - \overline{X}_{i} = school i's mean on variable X (pretest); $\overline{\overline{X}}$ = the overall grand mean of variable X (pretest); \overline{Z}_{i} = school i's mean on variable Z (SES); and
 - $\frac{1}{\overline{Z}}$ = the overall grand mean of variable Z (SES).

In summary, mean posttest (or post-attitude) differences among schools were statistically adjusted for pretest (or pre-attitude) and SES differences by means of analysis of covariance. Adjusted posttest (or postattitude) means were computed for each school. The proportion of outcome variance uniquely associated with school membership was computed for each outcome measure and used as an index of the differential impact of schools and of the educational environments they were providing for students.

7. What analytic strategy was employed to examine the school-level associations between achievement growth (or changes in attitudes) and school environment attributes?

Adjusted posttest (or post-attitude) school means for each outcome measure shown in Table 2 were computed and separately ranked. (The highest adjusted school mean received the highest rank.) Descriptive statistics were then prepared for each school (separately by grade) with respect to the outcome measures themselves, the average quantity of school measures. the mean treatment attributes, and the average resource variables shown in Table 2. Next, this information was placed in summary tables according to each school's rank order on the CTBS Battery Total Score. The tables were scanned to see if any notable linear relationship existed between attributes of school environments and adjusted outcomes. An index of the association between the adjusted posttest school means and Number of Minutes per Day, Total Time Before Posttest (during the posttest school year), Level of Innovation, Degree of Individualization, and Teacher/Student Contact Hour Ratio was computed by correlating the measures, using the means shown in these summary tables as the basic data. School-level associations w_{\perp} the Attitude Composite were summarized similarly.

20

III. 'RESULTS AND DISCUSSION

Findings have been organized into short subsections summarizing the results regarding the school-level associations among the various outcomes and the various school environment attributes of interest in this report. A final section reviews these findings in the context of the results and conclusions discussed in Volume I and the Volume I Supplement of the Project LONGSTEP final report.

Magnitude of School Differences

Table 3 contains the proportion of student-level variance in each outcome measure, that could be uniquely associated with students' school mem-. bership. Three trends seemed to be apparent in this table:

- notable differences among schools existed for all outcomes for students in grade 3 and, to a lesser extent, for students in grade 6
- school differences with respect to Arithmetic Computation were very large in grade 3 and worthy of note in grades 6 and 7
- school differences with respect to the Attitude Composite were largest for grade 6 and noteworthy for grade 3.

Associations Among Outcomes

Adjusted school means with respect to the CTBS Battery Total, the various CTBS subtests and the Attitude Composite are shown for each analysis grade in Attachment A, Tables A-4 through A-8. (Tables A-9 through A-13 in Attachment A contain the school pre-, post- and SES means and standard deviations for three outcomes--the CTBS Battery Total, the CTBS Arithmetic Computation score and the Attitude Composite.) Examination of the tables of adjusted school means showed that

 a school's average adjusted posttest performance on one measure of cognitive achievement was, as expected, highly related to its average adjusted posttest performance on the other cognitive measures

113

Proportions of Outcome Variance Uniquely	Associated with	·
School Membership During the 1972-73	School Year ¹	

TABLE 3

			Grade	5	
Outcome/Dependent Variable	3	6	7	10	<u> 12 </u> ,
CTBS Battery Total	.077	.018	.02.	.006	.006
Attitude Composite	.038	.052	.022	.011	.000
CTBS Reading Vocabulary	.081	.013	.007	.005	.014
CTBS Reading Comprchension	.075	.024	.018	.008	.009
CTBS Arithmetic Computation	.145	.080	.059	.008	.000
CTBS Arithmetic Concepts	.057	.025	.028	.004	.005
CTBS Arithmetic Applications	.068	. 05 3	.023	.020	-007

¹The squared multiple correlations from which these uniquenesses were computed are shown in Attachment A, Table A-2.

-

.....

ER

- the rank orders of the schools on the various adjusted CTBS subtest means, were not identical (except in grades 10 and 12 where the numbers of different schools were very small)
- except in two cases, the adjusted mean Attitude Composite was not significantly correlated with any of the CTBS measures (see Table 4).

School Outcomes and Quantity of Schooling

•

School-level aggregate scores were computed for the quantity of schooling indices listed previously in Table 2. Each aggregate score was equal to the average score (or for some indices, the sum) computed across language arts, arithmetic/mathematics, social studies, and science subjectmatter areas for a given grade. The results are shown in Attachment A, Tables A-14 through A-18. Adjusted posttest (or post-attitude) means were then correlated with these indices to provide a school-level measure of the association between achievement growth or attitude change and quantity of schooling. Table 5 shows the correlations of Number of Minutes per Day and Total Time Before the Posttest with the three outcomes for which there were notable differences among schools--CTBS Battery Total, CTBS Arithmetic Computation, and Attitude Composite. Because of the small numbers of schools, especially for grades 10 and 12, only two of the intercorrelations were statistically significant -- the correlations of both key quantity of schooling indices with the Attitude Composite adjusted school means for grade 7. Since these correlations were positive, positive growth in attitudes toward school and schooling occurred in those schools having more instructional time per day (relative to the other Project LONGSTEP schools with seventh-graders). Table 5 also shows that most of the correlations with the Attitude Composite adjusted school means were positive, even where they were not statistically significant.

School Outcomes and Innovative Treatment Environments

School-level means for the educational treatment attributes listed previously in Table 2 have been placed in Attachment A, Tables A-19 through A-21. Only the means for schools with students in grades 3, 6 and 7 have

15

TABLE 4

School-Level Correlations Between *the Adjusted Mean Attitude Composite Score and the CTBS Adjusted Posttest Means

/Variable)3	6	Grade 7	10	12	
CTBS Battery Total	. 45	. 33	08	. 79	.10	
CTBS Reading Vocabulary	.22	.19	21	. 30	.13	
CTBS Reading Comprehension	.21	•.33	.07	.75	.09	anjan No T
CTBS Arithmetic Computation	.43	.00	13	.63	.28	
CTBS Arithmetic Concepts	.58*	. 31	19	.73	.56	
CTBS Arithmetic Applications	.17	. 36*	33	.60	08	
Number of Schools	13	30	18	6	3	

 $*p \leq .05$ (two-tailed)

. 16

 $\mathbf{24}$

<u>;</u>:::

ر:

TABLE 5

School-Level Correlations of Key Quantity of Schooling Indices with Selected Outcomes

^----

1.

			Grade	•	
Variable	3	6	7	10 _	12
Number of Minutes per Day		•			
CTBS Battery Total	23	.19	29	.17	52
CTBS Arithmetic Computation	a ¹¹	.01	39	.37	50
Attitude Composite	08	.04	.56*	.31	.52
	and they	i			
Total Time Before the Posttest			•		
CTBS Battery Total	27	.00	05	. 31	18
CTBS Arithmetic Computation	·17	17	18	.48	15
Attitude Composite	01	01	.52*	.33	.63
					6.
Number of Schools		,			
Cognitive Outcome	13	34	19 ·	6	3
Attitude Outcome	13	.30	18	6	3

 $p \leq .05$ (two-tailed)

ERIC

25

17,

been included in these particular analyses since they were the only grades for which nontrivial mean differences among schools existed (see Table 3). Furthermore, attention was focused on the three outcomes where differences seemed to be occurring--the CTBS Battery Total and Arithmetic Computation scores and the Attitude Composite index. Adjusted outcome means (shown in Attachment A, Tables A-4, A-5 and A-6) were associated with the treatment attributes. Table 6 shows the school-level correlations (unweighted by numbers of students) between the three outcomes of primary interest and the two key treatment indices, Level of Innovation and Degree of Individualization. Examination of these correlations shows that (1) all but two of the 18 coefficients were negative, and (2) only one coefficient was statistically significant. Thus, greater mean growth in achievement and greater positive changes in attitude either were not associated with the more moderate and less innovative schools present in these samples of schools.

School Outcomes and Resource Variables

The CTBS Battery Total and Arithmetic Computation posttest and the Attitude Composite means (adjusted) were also correlated with the resource variables listed in Table 2. School-level resource data for grades 3, 6 and 7 are shown by school in Attachment A, Tables A-22, A-23 and A-24. Correlations of the three outcomes with the resource index of primary interest, Teacher/Student Contact Hour Ratio are presented in Table 7. These coefficients do not suggest that achievement or attitudes are highly related to our measure of teacher/student contact. It should be pointed out, however, that only two of the coefficients were negative and that they also were very small.

Discussion

4

These results suggest that average achievement growth and attitude change are not highly or consistently associated (across grades) with innovative school environments. In fact, the only correlations between average outcomes and school attributes that were statistically significant were (1) the positive correlations between the Attitude Composite and the quantity of schooling indices for the seventh grade (see Table 5) and (2) the

18

	School-Level Correlations Between
Selected	Adjusted Outcomes and Level of Innovation
,*	and Degree of Individualization

		Grade	·
Variable	<u> </u>	6	7
Level of Innovation		1%.	•
CTBS Battery Total	57*	.06	09
CTBS Arithmetic Computation	51	13	29
Attitude Composite	29	23	43
<i>a</i>			
Degree of Individualization	· .		. 2 .
. CTBS Battery Total	44	.11	15
CTBS Arithmetic Computation	31	06	35
Attitude Composite	25	23	27
Number of Schools			
Cognitive Outcome	13	34	19
Attitude Outcome	13	× 30	18

<u>2</u>7

19

* p < .05 (two-tailed)

TABLE 6

TABLE .7

Ľ

School-Level Correlations Between Selected Adjusted Outcomes and Teacher/Student Contact Hour'Ratio

4		Grade	
Variable	3	6	7
<u>Teacher/Student Contact</u> Hour Ratio	-		
CTBS Battery Total	05	.07	`. 28
CTBS Arithmetic Computation	.02	01	.41
Attitude Composite	.47	.27	.21
Number of Schools "			
. Cognitive Outcome	13	34	19
Attitude Outcome	13	30	18

20

FI

28

z.

negative correlation between the CTBS Battery Total Score and Level of Innovation for the third grade (see Table 6). However, examination of the distribution of adjusted posttest school means for the third grade analysis sample (see Table A-4, Attachment A) indicated that the performance of students in two schools (schools 90 and 74) may have had a substantial impact on the observed negative correlation between posttest and Level of Innovation. It was decided, therefore, that the school-level correlations between the three primary outcomes of interest and the key school educational environment indices would be recomputed with two schools removed from the grade 3 correlations.

Coefficients obtained with and without the deleted schools are shown in Table 8. This table indicates that deletion of schools 90 and 74 from the grade 3 analysis has the general effect of reversing the sign of the relationship between these three school outcome measures and the school environment indices from negative to positive. This is most notable in the case of the statistically significant negative correlation of Level of Innovation with the CTBS Battery Total adjusted posttest school means. This result leads us to question the generality of a trend for lowered average cognitive achievement to be associated with less innovative emphasis in the grade 3 Broject LONGSTEP schools. It could be argued, of course, that deleting observations so that one's findings more closely match one's suspicions is neither objective nor analytically defensible. However, the fact that correlations between all outcomes and all school environment indices were changed similarly by this procedure conjulating schools does suggest that these "outlying" schools were having a general impact on all results for grade 3, not just on the correlations with Level of Innovation.

In any case, the results of the analyses briefly described in this section do not show that innovative school environments had a substantially positive impaction achievement at the school level. Concluding that there is a negative relationship between achievement/attitudes and innovative emphasis is probably not warranted because the negative effects that were present were not dramatic. Furthermore, the negative effects observed in grade 3 were not general but due to high adjusted mean achievement in two schools that also happened to have little emphasis on innovation.

21

 $\mathbf{29}$

TABLE	8
-------	---

School-Level Correlations of Selected Adjusted Outcomes for Grade 3 with the Key School Environment Indices -With/Without High Achieving Schools

-3

ER

Number of Minutes per Day23.0511.14Total Time Before the Posttest27.0417.17Level of Innovation57.0251.22Degree of Individualization44.0631.33	ic Attitu Compos N = 13 N	ude site N = 11
Total Time Before the Posttest27.0417.17Level of Innovation57.0251.22Degree of Individualization44.0631.33	08	.20
Level of Innovation57.0251.22Degree of Individualization44.0631.33	01	.26
Degree of Individualization44 .0631 .33	29	.05
	25	.05
Teacher/Student Contact0501 .02 .17 Hour Ratio	.47	.55

30

22

< 1

IV. SUMMARY OF FINDINGS

The findings of this study suggest that

- Important differences among schools with respect to the achievement test performance and attitudes of their students existed in a number of LONGSTEP samples analyzed.
- Greater average growth in achievement test performance and positive changes in attitude were <u>not</u> associated with school-level emphasis on innovation and individualization.
- Measures of growth in achievement were typically not related to our key quantity of schooling indices. There was, however, a tendency for these indices to be positively related to student attitudes toward schooling.
- In general, changes in average student attitudes toward school were <u>not</u> significantly related to average growth in achievement. However, the majority of correlations were v positive.

In respect to our primary hypothesis, the results of this study indicate that innovative school environments did <u>not</u> demonstrate a substantially positive impact on either achievement or student attitudes. These findings essentially support the student-level findings reported in Volume I and the Volume I Supplement. The pattern of results leads us to conclude that important differences among schools in the LONGSTEP sample did occur but that such differences were not highly associated with innovative school environments.

31

REFERENCES

Coles, G. J., Chalupsky, A. B., Evurett, B. E., Shaycoft, M. F., Rodabaugh, B. J., & Danoff, M. N. <u>Impact of educational innovation</u> on student performance: Project methods and findings for three <u>cohorts</u>. Project LONGSTEP final report: Volume I. Palo Alto, California: American Institutes for Research, 1976.

Coles, G. J., Chalupsky, A. B. <u>Impact of educational innovation on student</u> <u>performance: Overall findings for reading and arithmetic</u>. Project LONGSTEP final report: Volume I Supplement. Pato Alto, California: American Institutes for Research, 1976

 Mayeske, G. W., Wisler, C. E., Beaton, A. E., Jr., Weinfeld, F. D., Cohen, W. M., Okada, T., Proshek, J. M., & Tabler, K. A. <u>A study of our</u> <u>nation's schools</u>. Washington, D. C.: U. S. Government Printing Office, 1972.

81

ERIC

33

•

-consider the product of the state of the s

TABLE	A-I

Grade	Coefficie	ent Alpha
•	Pre-Attitude	Post-Attitude
3*	.53	.57
6**	.62	.64
7**	.66	.68
10**	.64	.65
12 ** ·	.60	.61

Coefficient Alpha (α) for the Attitude Composite Variable

* This is the internal consistency of the <u>items</u> in this scale based on all students for whom a Form A student questionnaire (during the pre-attitude year, 1971-72) or a Form B student questionnaire (during the postattitude year, 1972-73) was available. See Volume I, Chapter III.

*

$$\alpha = \left[\frac{k}{k-1}\right] \left[1 - \frac{\sum V_i}{k^2 V_t}\right], \text{ where } k = \text{number of scales (4),} \\ V_i = \text{variance of the } i\frac{th}{scale} \\ V_t = \text{variance of the composite} \\ \text{mean index.}$$

34

· A-1

TABLE A-2

Multiple Correlations (Squared) Between Outcomes and Pretest (or Pre-Attitude), Student Socioeconomic Status and School Membership

				Ŷ.	ł	5	Grade	(in 1972-	•73)						
Outcome/Dependent		Grade 3.		\ \	Grade 6) 		Grade 7	v	,	Grade 10			Grade 12	·
Variable	R ² (D)	R ² (P,S)	R ² (P,S,D)	R ² (D)	$R^2(P,S)$	R ² (P,S,D)	$R^{2}(D)$	R ² (P.S)	R ² (P.S.D)	R ² (D)	R ² (P.S)	P2(PSD)	2 ² (D)	P ² (P s)	2/B 6 D)
CTBS Battery Total	.1242	.6610	.7383	.1480	.8290	.8472	.0939	.8166	.8380	0774	.8353	.8409	.0548	.8362	.8422
Attitude Composite	.0255	.1131	.1511	.0694	.2840	. 3361	.0431	. 3768	. 3992	.0320	.4862	. 4974	.0447	.6013	.6016
CTBS Reading Vocabulary	.1495	.5275	.6089	1456	. 7245	.7372	.0899	.6598	.6664	.0824	.7113	.7163	.0814	.6926	.7070
CTBS Reading Comprehension	.Ĩ3¥	.5156	.5903	.1263	. 5766	.6001	.0773	.5690	.5873	.0929	.6057	.6135	.0489	.6101	.6194
CTBS Arithmetic Computation	.1074	.3488	, 4936	.1818	.4840	.5640	.1179	5646	.6233	.0364	, 7036	.7119	.0169	,7246	.7249
CTBS Arithmetic Concepts	.1066	.5447	.601B	.1064	. 5280	. 5526	.0748	.5105	.5385	.0529	,6463	.6507	.0309	.6609	.6657
CTBS Arithmetic Applications	.0909	. 3496	.4173	.1075	.5473	.6002	.0615	.5197	.5423	.0407	.5427	.5629	.0274	.5896	.5967

Note: $R^{2}(D)$, $R^{2}(P,S)$, $R^{2}(P,S,D)$ are defined in the body of the report.

35

A-2

- 36

Grade	Dependent Variable	Bw Pretest	* Bw SES
3	CTBS Battery Total	.88585	.3234
	Social Facility	.33760	.12292
\$.	CTBS Reading Vocabulary	.71677	.56510
•	CTBS Reading Comprehension	.71930	.83614
	CTBS Arithmetic Computation	.74337	.48854
•	CTBS Arithmetic Concepts	.74770	.71036
	CTBS Arithmetic Applications	.65458	.6989:
6	CTBS Battery Total	1.02021	. 39542
	Attitude Composite	.54641	.03014
	CTBS Reading Vocabulary	. 89737	.54778
	CTBS Reading Comprehension	.74504	1.00578
	CTBS Arithmetic Computation	.73850	.51376
	CTBS Arithmetic Concepts	.74706	.64207
	CTBS Arithmetic Applications	.73100	.75056
	`		
7	CTBS Battery Total	1.09308	.40666
•	Attitude Composite	.60022	.07969
	CTBS Reading Vocabulary	.89791	.76442
e Alan e e e e e e e e e e e e e e e e e e e	CTBS Reading Comprehension	.81402	1.08207
	CTBS Arithmetic Computation	.89730	.64957
	CTBS Arithmetic Concepts	.85086	.99437
	CTBS Arithmetic Applications	.76000	.78708
	•		
^{3w} Pretest	pooled within-groups raw score coefficient for prétest.	regression	(continued)
^{3w} SES	= pooled within-groups raw score for SES	regression co	efficient

Analysis of Covariance Within Group Regression Coefficients For Pretest (or Pre-Attitude) and SES

TABLE A-3

5

TABLE A-3 (continued)

Grade	Dependent Variable	Bwpretest*	Bw.ses**
10	CTBS Battery Total	. 97263	.31464
	Attitude Composite	.70727	.00517
	CTBS Reading Vocabulary	.83282	.66134
	CTBS Reading Comprehension	.75972	.81644
·	CTBS Arithmetic Computation	.86801	.29568
	CTBS Arithmetic Concepts	.84119	.52566
- :	CTBS Arithmetic Applications	.74848	: 70187
		Ĩ	
12	CTBS Battery Total	.96291	11598
•	Attitude Composite	.77669	.03729
	CTBS Reading Vocabulary	.80499	.20333
	CTBS Reading Comprehension	.84246	.13221
	CTBS Arithmetic Computation	.87701	14707
•	CTBS Arithmetic Concepts	. 85645	10549
	CTBS Arithmetic Applications	.75414	.21117

= pooled within-groups raw score regression coefficient.
for pretest

Bwses

ER

^{Bw}Pretest

= pooled within-groups raw score regression coefficient
for SES

38

A-4

School	Site	No. of Students (Test Variables	UTBS Battery Total	CTHS Reading Vocabulary	CTBS Reading Comprehension	CIBS Arithmetic Computation	CIBS Arlthmetic Concepts	CTRS Arithmatic Applications	Attitude Composite
	<u> </u>	Analyses)	Adj.X (Rank)	Adj.X (Rank)	Adj.X (Rank)	Adj X (Rank)	Adj.X (Rank)	Adj.X (Rank)	Adj.X (Rank)
90	13	31	412.9 (13)	434.0 (12)	465.3 (12)	199.7 (12)	435.8 (13)	417.6 (11)	106.7 (13)
74	2	40	408.0 (12)	441.7 (12)	484.4 (13)	419.7 (13)	431.0 (12)	421.,8 (12)	191.4 (7)
26	12	96	387.3 (11)	412.0 (11)	428.0 (-8)	984. F (11)	412.2 (9)	422.6 (13)	99.9 (4)
72	2	29	386.1 (10)	407.5 (91	417.3 (5)	371,8 (-8)	420.6 (11)	414.5 (10)	100.4 (5).
91	13	76	380.5 (9)	408.0 (10)	445,2 (11)	371.8 (j))	418.6 (10)	<u>413 1 (9)</u>	101.5 (9)
93	13	22	379.0 (8)	393,4 (4)	427.3 (7)	175.2 (9)	408.5 (8)	379.8 (3)	103.2 (11)
92	13	45	378.5 (7)	197.5 (9)	431,8 (10)	366.7 (3)	400.1 (6)	392.4 (8)	100.4 (6)
81	9	40	370.3 (6)	198.5 (7)	411.6 (4)	377.0 (10)	398.7 (*5)	388.1 (5)	102.3 (10)
79	9	39	362.9 (5)	491,8 (-8	428.5 (9)	35.3 (3)	- 398.1 (4)	389.8 (7)	98.7 (2)
n	. 2	59	360.9 (.4)	381.4 (2)	398.6 (1)	968.6 (b)	393.8 (3).	~ 368.0 (1)	101.5 (8)
25 -	12	111	360.0 (3)	J84,9 (J)	402.9 (2)	345,0 (2)	402.5 (7)	388.8 (6)	103.6 (12)
59	11	n,	358.7 (2)	395.2 (5)	421.4 (6)	366,0 (3)	379.3 (1)	379.4 (2)	97.3 (1)
73	2	56	356.4 (1)	380.6 (1)	405.4 ())	Ju7.6 (5)	390.5 (2)	382.1 (4)	99.5 (3)

40

TABLE A-4

Adjusted Outcome Means by School - Grade 3

*Highest adjusted school mean received the highest rank.

. . . .

∧-5

Adjusted	Outcome	Means	by	School	-	Grade	6	
----------	---------	-------	----	--------	---	-------	---	--

i 4 7 7 5	Analyses) 18 28 39 55 22	Adj.X 528.1 506.8 506.6 504.6	(34) (33) (32) (31)	<u>Adj.y</u> 533.: 497.4 51 6 .9	<u>(Rank)</u> (34) (10)	<u>Adj.₹</u> 538.5	(Rank) (30)	λdj.X	(Rank)	Adj.X 540.7	(Rank)	Adj.X	(Rank)	<u>Adj.</u> X	(Rank)
i 4 7 5	18° 28 39 55 22	528.1 506.8 506.6 504.6	(34) (33) (32) (31)	533.: 497,4 51 6 ,9	(34) (10)	¹⁰ 538.5	(<u>3</u> 0)	496,5	(27)	540.7	in	553-0	(W)	104 0	(20)
4 7 7 5	28 39 55 22	506.8 506.6 504.6	(33) (32) (31)	497,4 516,9	(10)	CA3 0					1.341 /		1.147	1104.0	1291
7 7 5	39 55 22	506.6 504.6	(32)	516.9		1 23/.8	(29)	495.2	(25)	512.2	(28)	530.8	(33)	103.0	(24)
7 5 ,	22 22	504.6	(11)		(33)	555.0	(34)	505.0	(30)	502.7	(20)	516.2	(26)	102.3	(16)
5	22	407 D	1211	503.6	. (16)	541.7	(32)	499,1	(28)	515.0	(31)	511.2	(23)	102.6	.(19)
,	· ·	471.7	(30)	508.6	(26)	506.6	(7)	512.6	(32)	504.7	(21)	491.8	(6)	101.9	(15)
1										÷		•			
13	41	497.5	(29)	510.9	(28)	518.9	(17)	492.5	(23)	510.8	(26)	517.5	(29)		()
2	62 ,	496.4	(28)	515.2	(30)	522.7	(18)	516.6	(33)	514.8	(29)	523.2	(32)	102.8	(22)
10	50	495.3	(27)	506.2	(22)	532.5	(26)	472.8	(10)	501.6	(17)	498.0	(11)	101.6	(11)
1	. 49	495.2	(26)	504.1	, (18)	535.7	(28)	505.5	(31)	506.5	(23)	520.8	(30)	100.2	(4)
1	53	495.0	(25)	507.0	(23)	512.0	(11)	482.7	(18)	501.9	(19)	498.1	(]2)	102.3	(17)
		 					j,	,				;			
13	1 79 - 411	494.2	(24)	507.2	(24)	508.6	(9)	496.3	(26)	511.6	(27)	516.2	(25)		()
1	45	493.0	(23)	499.8	(11)	525.8	(21)	478.3	(15)	506.8	(24)	510.2	(22)	101.6	(10)
6	• 1	490.1	(22)	496.4	(7)	552.7	(3))	476.4	(13)	514.9	(30)	512.3	(24)	107.1	(30)
5	19	489.9	(21)	510.5	⁵ (27) ₃	539.6	(31)	482.4	. (16)	506.9	(25)	498.2	(13)	101,7	(12)
1	'66	489.3	(20)	493,9	(4)	524.3	(20)	517.7	(34)	520,3	(33)	517.2	(27)	98.2	(2)
1	32	488.3	(19)	507.3	(25)	· 524.0	(19) .	493.8	(24)	505.7	(22)	521.9	(31)	103.7	(28)
2	69	486.6	(18)	501.5	(14)	518.4	(16)	485,4	(20)	500.6	(16)	503.1:	(19)	103:3	(26)
1	57	486.5	(17)	516.4	(32)	526.6	(22)	471.2	(8)	488.9	(6)	499.2	(15)	101.2	(7)
6	23	486,4	(16)	493.7	(3)	533.8	(27)	1.62,3	(5)	516.8	(32)	500.2	(16)	103.5	(27)
10	112	485.7	(15)	502.2	(15)	514.7	(14)	471.6	. (9)	493.1	(12)	496,3	(9)	101.8	(14)
1	2 10 1 7 13 1 6 5 1 1 2 1 6 10	2 62 10 50 1 49 7 53 13 79 1 45 6 7 5 19 1 32 2 69 1 57 6 23 10 112	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 62 496.4 (28) 515.2 (30) 10 50 495.3 (27) 506.2 (22) 1 49 495.2 (26) 504.1 (18) 7 53 495.0 (25) 507.0 (23) 13 79 494.2 (24) 507.2 (24) 1 45 493.0 (23) 499.8 (11) 6 7 490.1 (22) 496.4 (7) 5 19 489.9 (21) 510.4 $(27)_3$ 1 32 486.3 (19) 507.3 (25) 2 69 486.6 (18) 501.5 (14) 1 57 486.5 (17) 516.4 (32) 6 23 486.4 (16) 493.7 (3) 10 112 485.7 (15) 502.2 (15)	2 62 496.4 (28) 515.2 (30) 522.7 10 50 495.3 (27) 506.2 (22) 532.5 1 49 495.2 (26) 504.1 (18) 535.7 7 53 495.0 (25) 507.0 (23) 512.0 13 79 494.2 (24) 507.2 (24) 508.6 1 45 493.0 (23) 499.8 (11) 525.8 6 7 490.1 (22) 496.4 (7) 552.7 5 19 489.9 (21) 510.4 (27) 539.6 1 66 489.3 (20) 493.9 (4) 524.3 1 32 488.3 (19) 507.3 (25) 524.0 2 69 486.6 (18) 501.5 (14) 518.4 1 57 486.5 (17) 516.4 (32) 526.6 <t< td=""><td>2 62 496.4 (28) 515.2 (30) 522.7 (18) 10 50 495.3 (27) 506.2 (22) 532.5 (26) 1 49 495.2 (26) 504.1 (18) 535.7 (28) 7 53 495.0 (25) 507.0 (23) 512.0 (11) 13 79 494.2 (24) 507.2 (24) 508.6 (9) 1 45 493.0 (23) 499.8 (11) 525.8 (21) 6 7 490.1 (22) 496.4 (7) 552.7 (33) 5 19 489.9 (21) 510.4 (27) 539.6 (31) 1 '66 489.3 (20) 493.9 (4) 524.3 (20) 1 32 486.3 (19) 507.3 (25) 524.0 (19) 2 69 486.6 (18) 501.5 (14) 518.4 (16) 1 57 486.5 (17)</td><td>2 62 496.4 (28) 515.2 (30) 522.7 (18) 516.6 10 50 495.3 (27) 506.2 (22) 532.5 (26) 472.8 1 49 495.2 (26) 504.1 (18) 535.7 (28) 505.5 7 53 495.0 (25) 507.0 (23) 512.0 (11) 482.7 13 79 494.2 (24) 507.2 (24) 508.6 (9) 496.3 1 45 493.0 (23) 499.8 (11) 525.8 (21) 478.3 6 7 490.1 (22) 496.4 (7) 552.7 (33) 476.4 5 19 489.9 (21) 510.4 (27) 539.6 (31) 482.4 1 '66 489.3 (20) 493.9 (4) 524.3 (20) 517.7 1 32 486.6 (18) 501.5 (14) 518.4 (16) 485.4 1 57</td><td>2 62 496.4 (28) 515.2 (30) 522.7 (18) 516.6 (13) 10 50 495.3 (27) 506.2 (22) 532.5 (26) 472.8 (10) 1 49 495.2 (26) 504.1 (18) 535.7 (28) 505.5 (31) 7 53 495.0 (25) 507.0 (23) 512.0 (11) 482.7 (18) 13 79 494.2 (24) 507.2 (24) 508.6 (9) 496.3 (26) 1 45 493.0 (23) 499.8 (11) 525.8 (21) 478.3 (15) 6 7 490.1 (22) 496.4 (7) 552.7 (33) 476.4 (13) 5 19 489.9 (21) 510.4 (27) 539.6 (31) 482.4 (16) 1 32 486.3 (19) 507.3 (25) 524.0 (19) 493.8 (24) 2 69 486.6 <</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>2 62 496.4 (28) 515.2 (30) 522.7 (18) 516.6 (13) 514.8 (29) 10 50 495.3 (27) 506.2 (22) 532.5 (26) 472.8 (10) 501.6 (17) 1 49 495.2 (26) 504.1 (18) 535.7 (28) 505.5 (31) 506.5 (23) 7 53 495.0 (25) 507.0 (23) 512.0 (11) 482.7 (18) 501.9 (19) 13 79 494.2 (24) 507.2 (24) 508.6 (9) 496.3 (26) 511.6 (27) 1 45 493.0 (23) 499.8 (11) 525.8 (21) 478.3 (15) 506.8 (24) 6 7 490.1 (22) 496.4 (7) 552.7 (33) 476.4 (13) 514.9 (30) 5 19 489.9 (21) 510.4 (27) 539.6 (31) 482.4 (16) 505</td><td>2 62 496.4 (28) 515.2 (30) 522.7 (18) 516.6 (13) 514.8 (29) 523.2 10 50 495.3 (27) 506.2 (22) 532.5 (26) 472.8 (10) 501.6 (17) 498.0 1 49 495.2 (26) 504.1 (18) 535.7 (28) 505.5 (31) 506.5 (23) 520.8 7 53 495.0 (25) 507.0 (23) 512.0 (11) 482.7 (18) 501.9 (19) 498.1 13 79 494.2 (24) 507.2 (24) 508.6 (9) 496.3 (26) 511.6 (27) 516.2 1 45 493.0 (23) 499.8 (11) 525.8 (21) 478.3 (15) 506.8 (24) 510.2 6 7 490.1 (22) 496.4 (7) 552.7 (33) 476.4 (13) 514.9 (30) 512.3 5 19 489.9 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td<></td></t<>	2 62 496.4 (28) 515.2 (30) 522.7 (18) 10 50 495.3 (27) 506.2 (22) 532.5 (26) 1 49 495.2 (26) 504.1 (18) 535.7 (28) 7 53 495.0 (25) 507.0 (23) 512.0 (11) 13 79 494.2 (24) 507.2 (24) 508.6 (9) 1 45 493.0 (23) 499.8 (11) 525.8 (21) 6 7 490.1 (22) 496.4 (7) 552.7 (33) 5 19 489.9 (21) 510.4 (27) 539.6 (31) 1 '66 489.3 (20) 493.9 (4) 524.3 (20) 1 32 486.3 (19) 507.3 (25) 524.0 (19) 2 69 486.6 (18) 501.5 (14) 518.4 (16) 1 57 486.5 (17)	2 62 496.4 (28) 515.2 (30) 522.7 (18) 516.6 10 50 495.3 (27) 506.2 (22) 532.5 (26) 472.8 1 49 495.2 (26) 504.1 (18) 535.7 (28) 505.5 7 53 495.0 (25) 507.0 (23) 512.0 (11) 482.7 13 79 494.2 (24) 507.2 (24) 508.6 (9) 496.3 1 45 493.0 (23) 499.8 (11) 525.8 (21) 478.3 6 7 490.1 (22) 496.4 (7) 552.7 (33) 476.4 5 19 489.9 (21) 510.4 (27) 539.6 (31) 482.4 1 '66 489.3 (20) 493.9 (4) 524.3 (20) 517.7 1 32 486.6 (18) 501.5 (14) 518.4 (16) 485.4 1 57	2 62 496.4 (28) 515.2 (30) 522.7 (18) 516.6 (13) 10 50 495.3 (27) 506.2 (22) 532.5 (26) 472.8 (10) 1 49 495.2 (26) 504.1 (18) 535.7 (28) 505.5 (31) 7 53 495.0 (25) 507.0 (23) 512.0 (11) 482.7 (18) 13 79 494.2 (24) 507.2 (24) 508.6 (9) 496.3 (26) 1 45 493.0 (23) 499.8 (11) 525.8 (21) 478.3 (15) 6 7 490.1 (22) 496.4 (7) 552.7 (33) 476.4 (13) 5 19 489.9 (21) 510.4 (27) 539.6 (31) 482.4 (16) 1 32 486.3 (19) 507.3 (25) 524.0 (19) 493.8 (24) 2 69 486.6 <	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2 62 496.4 (28) 515.2 (30) 522.7 (18) 516.6 (13) 514.8 (29) 10 50 495.3 (27) 506.2 (22) 532.5 (26) 472.8 (10) 501.6 (17) 1 49 495.2 (26) 504.1 (18) 535.7 (28) 505.5 (31) 506.5 (23) 7 53 495.0 (25) 507.0 (23) 512.0 (11) 482.7 (18) 501.9 (19) 13 79 494.2 (24) 507.2 (24) 508.6 (9) 496.3 (26) 511.6 (27) 1 45 493.0 (23) 499.8 (11) 525.8 (21) 478.3 (15) 506.8 (24) 6 7 490.1 (22) 496.4 (7) 552.7 (33) 476.4 (13) 514.9 (30) 5 19 489.9 (21) 510.4 (27) 539.6 (31) 482.4 (16) 505	2 62 496.4 (28) 515.2 (30) 522.7 (18) 516.6 (13) 514.8 (29) 523.2 10 50 495.3 (27) 506.2 (22) 532.5 (26) 472.8 (10) 501.6 (17) 498.0 1 49 495.2 (26) 504.1 (18) 535.7 (28) 505.5 (31) 506.5 (23) 520.8 7 53 495.0 (25) 507.0 (23) 512.0 (11) 482.7 (18) 501.9 (19) 498.1 13 79 494.2 (24) 507.2 (24) 508.6 (9) 496.3 (26) 511.6 (27) 516.2 1 45 493.0 (23) 499.8 (11) 525.8 (21) 478.3 (15) 506.8 (24) 510.2 6 7 490.1 (22) 496.4 (7) 552.7 (33) 476.4 (13) 514.9 (30) 512.3 5 19 489.9 <td< td=""><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td></td<>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

* Highest adjusted school mean received the highest rank.

** As noted in the text, attitude data could not be collected at all schools. Therefore, the highest rank here is 30.

A-6

ER

41

TABLE A-5 (continued)

	J	So. 'oi	СТВ	CTBS	CTBS	CTBS	CTBS	CTBS	Artitude
School	Site	Students (Test Variables	Battery Total	Reading Vocabulary	Reading Comprehension	Arithmetic Computation	Arithmetic Concepts	Arithmetic Applications	Composice
		(menace)	Adj.X (Rank)	Adj.X (lank)	Adj.X (Rank)	Adi.X (Rank)	Adj.X (Rank)	Adj.X (Rank)	Adj.X (Rani
99	•6	J 5 59	484.7 (14)	490.6 (1)	529.1. (24)	501.0 - (29)	499.3 (15)	517.3 (28)	102.7 (2
10 -	1.	11	484.0 (13)	505.6 - (21)	512.4 (12)	489,6 (22)	489.1 (-8)	504.6 (20)	103.2 (2
27	12`	· 239	482.4 4(12)	515.0 (29)	527.0 (23)	455.1 (1)	490.8 (9)	486.1 (1)	100.5 (
3	. 8	ີ 32	481.8 (11)	500.9 (13)	514.4 (13)	487(1 (21)	495.1 (13)	506.6 (21)	101.8 (1
72	2	21	481.6 (10)	516.3 (31)	500.0 (3)	470.2 (7)	488.5 (3)	497.4 (10)	102.9 (2
90	13	49	.480.5 (9)	491.4 (2)	507.1 (8)	482.6 (17)	487.1 (2)	489.6 (5)	(•
59	11	102	·479.6 (8)	505.1 (20)	-502.7 (4)	462.2 (4)	488.9 (5)	488.9 (4)	102.6 (1
, 98	6	29	478.8 (7)	50th (19).	529.2 (25)	459.7 (3)	497.5 (14)	501.5 (17)	101.2 (
6.93	13	26	478.5 (6)	500.5 (12)	7482.1 (1)	476.8 (14)	501.7 (18)	498.3 (14)	 (-
n	2	. 14	477.9 (5)	495.9 (15).	504.2 (5)	467.9 (6)	488.6 (4)	488.8 (3)	99.5 (
81	9	54	476.1 (4)	496.6 (8)	506.3 (6)	484.1 (19)	492.4 (10)	493.1 (7)	96.4 (
55	3	265	475.3 (3)	496.3 (6)	514.9 (15)	457.6 (2)	497.7 (11)	494.6 (8)	100.7 (
61	11	94	473.9 (2)	504.1 (17)	509.0 (10)	475.4 (11)	4 85.2 (1)	487.6 (2)	101.2 ()
79	9	63	471.8 (1)	496.8 (9)	492.9 (2)	476.1 (12)	489.0 (7)	502.1 (18)	102.7 (2)

* Highest adjusted school mean received the highest rank.

**
 As noted in the text, attitude data could not be collected at all schools.
 Therefore, the highest rank here is 30.

A-7

Adjusted	Outcome	Means	by	School -	Grade	7
-						•

School	Site	No. of Students (Test Variables	CTBS Battery Total	CTBS ⁿ Read ng Vocabulary	CTBS Reading Comprehension	UIBS Arithmetic Computation	CIBS Arithmetic Concepts	CIBS Arithmetic Applications	Attitude Composite (
	· 	Anslyses)	Adj.X (Rank)	Adj.X (Rank)	Adj.X (Rank)	Adj.X (Rank)	Adj.X (Rank)	Adj.X (Rank)	Adj.X (Rank)
31	14	24	535.1 (19)	542.2 (19)	556.1 (19)	550.5 (19)	546.1 (18)	559.7 (19)	98.5 (5)
89	5	18	526.0 (18)	519.2 (12)	542.2 (17)	534.0 (17)	547.1 (19)	530.9 (16)	98 1 (4)
~ 60	11	91	523.6 (17)	521.7 (13)	554.7 (18)	514.8 (14)	528.9 (14)	532.5 (17)	100.1 (13)
85	9	39	519.4 (16)	530.5 (18)	542.0 (16)	523.2 (16)	516,9 (16)	538.5 (18)	97.1 (1)
4	- 8	47	515.7 (15)	512.7 (6)	536,2' (14)	535.9 (18)	535.4 (15)	498.2 (5)	100.5 (14)
	,			· · · ·	•••••••••••••••••	••••••••••••••••••••••••••••••••••••••			·
86	9	43	511.0 (14)	513.6 (7)	533.6 (11)	513.4 (13)	512.4 (11)	505.7 (10)	102.4 (18)
61	n	52	504.2 (13)	521.9 (14)	Š21.9 (6)	503.6 (12)	508.7 (7)	495.9 (-4)	99.1 (8)
55	9]	273	502.1 (12)	514,1 (8)	530.5 (10)	487.8 (8)	512,2 (19)	518.7 (15)	100.6 (15)
97 -	6	18 .	500.4 (11)	518.4 (11)	539.7 (15)	519.9 (15)	521.3 (13)	514.8 (12)	100.9 (16)
94	13	156	499.5 (10)	516.7 (10)	\$33.9 (13)	490.5 (9)	502.9 (6)	509-9 (11)	()
ข	11	291	496.1 (9)	523.9 (15)	525./5 (7)	478.8 (4)	500.4 (5)	503.1 (2)	99.1 (7)
20	1	80	495.5 (8)	24.8 (17)	533.6 (12)	485.0 (7)	512.3 (10)	505.1 (8)	99.8 (11)
67	10	64	(494.9 (7)	.4.2 (16)	520.2 (4)	466.3 (2)	497.3 (3)	505.3 (9)	101.6 (17)
35	1	133 😴	494.5 (6)	514.4 (9)	500.6 (1)	498.4 (10)	511.1 (8)	515.3 (13)	97.9 (2)
24	6	ני <i>ן</i> זיין איז	. 49 <u>3</u> .1 (5)	510.7 (4)	528.3 (9)	483.2 (6)	520.7 (12)	517.6 (14)	98.8 (6)
98	6	27 -	490.6 (4)	509 9 (2)	576 8 (8)	400 7 (11)	E10 1 (17)	· · · · · · · · · · · · · · · · · · ·	
21	1	160	485.2 (3)	508.2 (1)	520.0 (0)	477.7 (11) 481.8 (C)	730.1 (11)	4/010 (1)	99.0 (JZ) 07.0 (J)
76	2	152	478.8 (2)	510.0 (1)	5097 (2)	466 8 (3)	407.0 (1)	470.7 (0)	9/.9 (3) 00 5 (0)
75	2	81	476.5 (1)	512.4 (5)	513.8 (1)	457 g (1)	470.0 (4)	472.0 (2)	97.3 (9)

* Highest adjusted school mean received the highest rank.

** As noted in the text, attitude data could not be collected at all schools. Therefore, the highest rank here is 18.

A-8

ERIC

45

School	4 Site	No, of Students (Test Variables	CTBS Battery Total	CIBS Reading Vocabulary	CIBS Reading Comprehension	CHBS Arithmetic Computation	ClBS Arithmetic Concepts	.CTBS Arithmetic Applications	Attitude Composite
		Analyses)	Adj.X (Rank)	Adj.X (Kank)	Adj.X (Rank)	Adj.X (Kunk)	Adj.X (Rank)	Adj.X (Renk)	Adj.X (Rank)
· 36	1	195	622.5 (6)	633.0 (4)	636,0 (h)	607,9 (5).	630.9 (6)	636.4 (6)	101 3 (5)
28	12	342	616.1 (5)	634.8 (5)	627.3 (5)	607.3 (4)	624.8 (5)	607.8 (4)	100.5 (4)
87	9	225	614.4 (4)	635.2 (6)	627.1 (4)	600.6 (3)	616.8 (3)	597.1 ())	100-3 (-3)
56 68	10	234 . . • 155	612.9 (3) 602.7 (2)	631,1 ())	620.3 (3)	610.6 (.b)	623.9 (4)	612.3 (5)	100.1 (2)
22	1	320	599.3 (1)	623.0 (2)	607.5 (1)	590.0 (2) 586.7 (1)	611.4 (1)	· 590.6 (1) 596.5 (2)	100,5" (5) 98,8 (1)

TABLE A-7

Adjusted Outcome Means by School - Grade 10

1

4

* Highest adjusted school mean received the highest rank.

ĝ

48

47

A-S

School	Site	No. of Students (Test Variables Analyses)	CTBS Battery Total Adj.X (Rank)	CTBS Reading Vocabulary Adj.X (Eank)	ClBS Reading Comprehension /Adj.X (Rank)	CIBS Arithmetic Computation Adj.X (Rank)	CIES Arithmetic Concepts Adj.X (Rank)	CTBS Arithmetic Applications Adj.X (Rank)	Attitude Composite Adi.X (Rank)
22	1	317	663.8 (3)	684.6 (3)/	679.3 (1)	621.1 (3)	651.4 (2)	648.8 (3)	100.2 (1)
28	12	295	662.7 (2)	684.2 (2)	677.3 (2)	621.0 (2)	663.3 (3)	641.8 (2)	100.5 (3)
68	10	288	645.2 (1)	659.8 (/1)	655.6 (1)	616.7 (1)	645.8 (1)	629.5 (1)	100.3 (2)

4 16.1

*Highest adjusted school mean received the highest rank.

Adjusted Outcome Means by School - Grade 12

Table A-8

<u>10</u>

49

Full Text Provided by EPIC

•								•			
		4		TART	F A O						
				TUT I	6 A-9			•			
		ı 3			n.			1	•		
Means	(and	Standard	Deviations) by	School	for	Selected	Measures	-	Grade	3

School	Site	CTBS Battery Total - Postfest X SD	CTBS Battery Total - Pretest X SD	CTBS Arithmetic Computation Posttest X SD	CTBS Arithmetic Computation Pretest X SD	Student SES (Test Vari- able Analyses) X SD	Attitude Composite Posttest X SD	Attitude Composite Pretesi X SD	Student SES (Attitude Vari- able Analysis) X SD
90	11	383.2 (64.0)	275.9 (54.2)	364.1 (34.8)	299.5 (26.3)	94.9 (7.2)	103.1 (7.6)	98.3 (10.7)	96.1 (9.6)
74	2	405.1 (49.0)	306.8 (48.2)	410.6 (28.8)	309.4 (26.0)	93.2 (5.3)	101.3 (11.7)	102.9 (5.8)	93.4 (5.2)
26	12	393.2 (52.6)	312.4 (46.3)	381.7 (39.0)	310.1 (30.9)	105.2 (9.5)	100.9 (10.2)	102.1 (9.3)	105.1 (9.6)
72	2	340.9 (41.4)	260.1 (52.2)	358.9 (42.4)	306.0 (27.6)	90.4 (5.5)	99.8 (10.3)	102.5 (8.6)	90.4 (5.6)
91	13	373.8 (52.8)	301.4 (52.6)	368.8 (37.6)	315.7 (33.5)	95.9 (7.7)	99.5 (8.1)	96.6 (10.2)	95.6 (7.4)
93	13	350.9 (53.9)	277.1 (55.0)	361.3 (36.6)	307.7 (34.7)	96.4 (7.9)	103.3 (7.6)	102.4 (9.6)	96.2 (8.1)
92	13	352.0 (61.9)	279.0 (57.1)	354.6 (33.3)	303.2' (29.0)	96.5 (8.9)	99.9 (9.9)	100.5 (8.2)	96.5 (8.9)
81	9	377.7 (42.5)	317.1 (41.6)	381.2 (27.9)	324/9 (22.4)	96.8 (7.0)	101.6 (10.1)	99.9 (9.2)	96.8 (7.4)
79	9	399.4 (48.59)	345.5 (48.0)	370.1 (31.2)	344.2 (32.5)	109.2 (5.8)	101.3 (10.2)	104.9 (5.0)	109.2 (5.8)
<u></u>	2	334.4 (44.4)	280.1 (46.7)	367.3 (32.0)	319.8 (29.6)	93.3 (4.8)	100.9 (8.8)	101.5 (9.4)	93.4 (4.8)
25	12	366.9 (60.0)	314.0 (48.9)	363.5 (40.9)	312.4 (30.0)	103.8 (9.3)	103.4 (7.8)	99.0 (11.1)	103.0 (0.3)
59	- 11	386.6 (54.7).	334.8 (48.0)	379.3 (39.8)	327.1 (37.3)	111.9 (2.9)	98.8 (10.4)	100.7 (9.4)	111 8 (2.0)
13	2	374.3 (41.7)	327.4 (42.6)	379.2 (33.2)	332.1 (30.6)	101.0 (8.5)	99.6 (10.6)	100.9 (11.0)	100.8 (8.6)

A-11

51

Full Text Provided By Effic

TABLE A-10

Means (and Standard Deviations) by School for Selected Measures - Grade 6

School	Site	CTBS Batte Total - Posttes X	ety t SD	ĆTBS I Tot Pre X	lattery al - test SD	CTBS Arid Computa Postto X	hmetic otion est SD	CTAS Ari Comput Pret X	thmetic tation test SD	Studen (Test able An X	t SES Vari- alyses) SD	Att Comp Post X	itude osite test SD	Atti Compe Pre X	itude osite test SD	Studen (Attitud able An X	t SES le Vari- alysis) SD
. 9	1	496.9 (7	2.4)	424.2	(62.4)	479.1	(65.4)	427.3	(47.4)	92.5	(5.4)	101.9	(6.1)	96.1	(7.5)	92.5	(5.6)
30	4	507.5 (7	6.5)	454.6	(64.1)	486.4	(64.1)	437.5	(50.0)	94.7	(7.8)	100.9	(6.0)	96.0	(4.0)	94.7	(7.8)
32	7	535.0 (6	6.8)	476.6	(\$0.4)	531.2	(50.8)	475.6	(45.9)	108.0	(7:4)	102.3	(4.9)	99.1	(5.8)	107.8	(7.4)
33	7	530.5 (7	io.n)	474.1	(54.3)	532.3	(56.4)	484.9	(60.0)	108:0	(7.0).	.103.5	(5.3)	100.6	(6.4)	108.1	(7.0)
2	: 5	458.0 (6	0.4)	416.6	(57,9)	486.2	(58.7)	416.7	(38.2)	90.2	(5.5)	103.3	_{ام} (7.1)	102.7	(6,3)	90.2	(5.5)
92	13	492.4 // (6	10.0)	446.7	(49.7)	4/1.2	(60.0)	416.5	(\$2.0)	100,5	(9.1)		()		()		()
74	′2	501.6 (7	11.3)	458.9	(70.2)	535.8	(66.2)	475.2	(67.9)	94.9	(5.7)	103.7	(7.4)	101.5	(6.8)	94.9	(5.7)
63	10	468.9 (7	19.4)	428.5	(65.0)	447.6	(68.5)	416.1	(61.5)	93.4	(8.1)	103.6	(7.0)	103.5	(6.0)	93.0	(8.0)
1	1 :	484.8 (5	57.6)	443.1	(52.2)	496.8	(51.6)	436.4	(50.7)	96.4	(5.2)	97.8	(6.1)	95.4 [:]	(7.0)	96.4	(5.2)
. 34	,	517.2 (6	i4.0)	470.2	(55.0)	492.7	(50.6)	4 ; 2 . 9	(48.1)	109.0	(7.2)	102.5	(7.1)	99.5	(6.6)	108.9	(7.2)
91	13	481.4 (7	72.8)	439.6	(57.4)	488.2	(73.2)	435.3	(56.8)	99.2	(?.7)		()		()		()
17	1	446.2 (5	58.5)	408.5	(57.7)	455.1	(58.1)	418.9	(53.2)	93.4	(5.2)	98.5	(6.9)	94.3	(7.9)	93.5	(5,3)
["] 96	6	 521.9 ^{- '} (5	58.8)	487.0	(44.2)	517.1	(51.3)	5-18.0	(39.5)	89.7	(1.0)	104.5	(6.2)	95.3	(3.3)	89.7	(7.0)
1	5	480.4 (5	57.1)	444.1	(53.8)	456.8	(51.1)	414.0	(44.8)	95.8	(3.8)	1040	(6,9)	103.9	(4.8)	95.8	(3.8)
' B	1	545.0 (6	60.7)	502.3	(57.4)	\$36.2	(49.6)	493.2	(42.8	110.7	(5.9)	97.8	(7.0)	98.1	(5.8)	110.6	(5.9)
19	1	510.1 (6	68.0)	472.2	(52.3)	\$00.5	(58.1)	412.9	(54.5)	102.6	(8.2)	102.1	(5.6)	96.4	(5.8)	102.7	(8.4)
73	2	500.4 (6	69.1)	464.4	(59.0)	-497.4	(61.6)	400.2	(52.4)	102.5	(8.5)	104.2	(5.6)	100,9	(6.7)	102.7	(8.5)
15	1	486.6 (6	67.2)	453.4	(57.8)	465.2	(51.0)	440.4	(47.2)	96.0	(7.0)	100.9	(6.3)	99.3	(6.9)	96.1	(7.0)
· 97	6	499.6 (5	58.9)	467:4	(44.0)	413:9-	(43.8)	4h6.0	(43.7)	93.3	(3.2)	100.5	(4.6)	94.3	(5.3)	93.3	(3.2)
64	10	444.9 (5	53.2)	415.8	(46.3)	. 447.4	(53.5)	4.,9.8	(47.8)	90.1	(6.8)	101.8	(7.5)	100.0	(6.8)	90.8	(6.6)
99	6	514.2 (5	50.6)	482.3	(40.0)	524.6	(42.8)	4110.4	(32.4)	96.0	(6.8)	102.4	(6.4)	99.1	(6.6)	95'.9	(6.6)
10	1	483.3 (5	59.3)	411.8	(40,8)	465.8	(62.4)	4:1.8	(37.6)	87.9	(5.3)	100.1	(4.5)	94.4	(5.9)	B9.0	(4.8)
27	12	494.8 (3	75.2)	461.8	(65.3)	470.4	-(60.5)	460.8	(64.8)	106.0	(8.4)	100.7	(6.8)	99.5	(6.1)	105.9	(8.4)
3	8	475.1 (6	60.0)	448.5	(55.1)	491.8	(6).3)	457.8	(55.2)	91.8	(9.0)	103.2	(6.6)	102.7	(5.3)	91.8	(9.0)
72	2	459.8 (70.1)	433.3	(68.9)	479.9	(14.9)	41.4.0	(58.3)	92.6	(7.2)	102.0	(5.6)	98.2	(7.2)	93.1	(7.5)

A-12

53

ERIC

(continued)

r °∳a

/ School	Site	CIBS Bai Total Postte	ttery • Л est	CTBS Tot _Pre	dattery al - test	CIBS Ari Comjut Post	thmetic ation test	CTB (Ar: C imput Pret	ithmatic nation test	Studeni (Test) able An	t SES Vari- Alyses)	Atti Compo Post	tude osite test	Atti Compo Pret	tude osite cest	Studen (Attitud able Ar	nt SES le Vari- Malysis)
		<u> X </u>	SD	<u>X</u>	- <u>SD</u>	X	SD	Ī	ŠD	<u>x</u>	SD	X	SD	<u> </u>	SD	Ī	SD
90	บ่	459.6	(70.0)	431.9	(74.4)	463.6	(64.5)	420.9	° (58. 5)	98.7	(7.1)		(),	•• •	()	·	()
59	11	488.5	(75.8)	456.4	(68.5)	451.5	(67.1)	423.7	(59.0)	HO N	(4.9)	¹ 103.2	(5.8)	100.0	(5.9)	110.7	, (5.0)
98	6	489.2	(68.1)	464.5	(61.1)	468.9	(58.2)	462.4	(49.1)	93.8	(8.4)	100.6	[•] (5.7)	98,7	(7.5)	93.8	(8.4)
93	13	460.8	(68.5)	435.4	(61.8)	461.9	(72.2)	+25.8	(55.6)	98.1	(6.5)		()		()		()
71	2	447.3	(61.0)	423.1	(59:6),	452.3	(56.4)	: 26.7	(52.1)	90,9	(6.1)	100.6	(6.7)	101,8	(5.7)	96.9	(5.5)
- 81	9	476.9	(61.2)	452.9	(48.4)	~484.9	(61.2)	447.2	(46.3)	99.5	ty.1)	96.9	(6.9)	100.5	(5.9)	99.5	(9.1)
55	3	452.1	(68,3)	432.3	(60.7)	447.1	(55.8)	437.1	(51.2)	· 91.8	(7:0)	100.5	(7.3)	99.7	(6.7)	91.7	(6.9)
61	11	521,9	(68.4)	494.8	(59.2)	494.1	(59.9)	463.5	(52.1)	110.6	(5,])	101.5	(6.4)	99.4	(7.1)	110.5	(5.4)
79	9	505.4	(70.0)	481.3	(55.6)	491.3	(65.4)	46).0	(53.7)	109.0	(5.6)	103.1	(5.7)	99.8	(6.6)	109.0	(5.6)

TABLE A-10 (continued)

A-13.

i

****	1 11
1° A M I M	8-11
LADEL	n -11
	··· 、

Means (and Standard Deviations) by School for Selected Measures - Grade \flat

ι

.		<u> </u>	CTBS Batte	CTBS Battery	CTRS Artthanti-	erne (Malant				····
	School	Site	Total -	Total •	Computation	Computation	Test Vori-	Attitude Composite	Attitude	Student SES
	-		Postte .	Pretest	Posttest	Pretest.	able Analyses)	Posttest	Pretest	able Analysis)
	31	4	540.1 (60.9)	490 5 (6/ 1)	<u>x 50</u>	X SD	X SD	X SD	X SU	<u>X</u> SD
-	89	5	498.3 (98.4)	450.3 (04.1)	500.0 (61.1)	476.0 (62.5)	95.3 (8.5)	99.2 (5.7)	102.7 (5.6)	95.3 (8.5)
	60		531 6 (27 2)	(0).7 (0).4)	508.8 (92.4)	448.8 (69,5)	94.8 (7.3)	96.3 (6.2)	98.2 (6.6)	95.1 (6.3)
	85	•	570 3 (67 0)	407.7 (09.2)	501.0 (75.7)	450.8 (71.5)	109.8 (5.0)	100.0 (5.7)	99.4 (6.4)	109.8 (4.9)
•	4	8	SOE 1 (10 1)	527.4 (58.6)	552.6 (56.5)	495.1 (52.5)	109.1 (6.2)	96.2 (6.3)	98.0 (7.1)	109.4 (5.9)
		<u> </u>	<u> </u>	4/1.2 (67.5)	532.4 (64.2)	474.6 (62.6)	92.7 (6.3)	101.4 (7.2)	103.2 (6.8)	92.7 (6.3)
-	86	9	509.1 (83.6)	483.4 (57.1)	511.6 (75.7)	473.0 (61.5)	87.5 (6.3)	101.4 (7.4)	07.0 (6.7)	06.0 (('0)
	61	ш	535.1 (84.2)	509.0 (67.4)	517.4 (80.5)	481.9 (60,3)	109.3 (6.0)	99.9 (7.6)		1/10 1 ((0)
	55	3	470.5 (82.6)	458.5 (64,2)	463.4 (70.0)	452.2 (55.1)	91.4 (6.8)	100 2 (7.6)		109,1 (3.9)
	97	6	\$19.8 (62.4)	505.2 (56.7)	517.9 (50.1)	477.4 . (44.3)	91.1 (5.8)	99.5 (5.2)		91.3 (0.6)
•	94	13	493.6 (80.1)	479.4 (63.2)	489.2 (78.1)	472.9 (65.1)	98.5 (7.2)		27.0 (7.4)	91.0 (5.8)
	.27	12	498.3 (78.0)	486.6 (68.6)	171 7 175 1				()	
	20	s 1	524.1 (77.0)	SOR 0 (40 1)	(4/4./° (/3.4)	403.2 (60.9)	104.7 (9.0)	100.1 (6.8)	101.8 (6.9)	104.7 (9.0)
	67	10	460.5 (75.9)	/55 / (40 0)	(09./)	487.0 (59.8)	104.2 (8.1)	100.0 (8.7)	100.5 (7,4)	104.2 (8.1)
	35	. 7	531.0 (75.6)	420,4 (00,8)	4.13.8 (70.6)	446.1 (62.0)	90.1 (8.2)	100.4 (6.9)	100.1 (7.9)	90.3 (8.3)
			515 0 (75:0)	505 6 (01.2)	5.5.0 (70.4)	505.' (60.8)	108.4 (7.5)	98.8 (6.2)	_101.2(5.9)	108 .5(7.4)
			21010 (14,7)	(1.40) 0.000	510.3 (67.2)	<u>506: (53.9)</u>	96.2 (7.3)	97.3 (6.6)	98.8 (6.8)	96.2 (7.3)
	.98	. 6	491.9 (94.8)	487.7 (88.3)	512.0 (79.4)	491.6 (67.2)	93.5 (7.6)	98,4 (5,2)	99.3 (8.2)	035 (77)
	21	1	470.3 (72.6)	472.2 (56.9)	467.3 (63.3)	460 (51.0)	95.7 (8.0)	96.4 (7.1)	.98.8 (6.1)	05 7 (0.1)
	76	2	476.8 (91.9)	482.4 (74.1)	471.9 (79.1)	479.3 (63.4)	99.6 (7.9)	100.1 (6.6)	101.8 (7.0)	
	15	<u>/2</u>	481.0 (84.2)	490.5 (69.9)	491.3 (88.1)	520.1 (69.3)	94.2 (6.9)	101.3 (6.9)	104.2 (6:2)	0/ 2 (6 C)
•							. (0/7)	101.3 (0.9)	104.2 (6.7)	• 94.3 (6.5

A-14

. 57

E

3

58

ï

TABLE .	A-	1	4
---------	----	---	---

Means (and Standard Deviations) by School for Selected Measures - Grade 10

Scheol	Site	CTBS Battery Total - Posttest X SD	CTBS Bat Total Proter X	tery - st SD	CTBS Ar Compu Post	ithmetic tation test SD	CTBS: A Comp Pr X	rithuetic utation etest SD	Stude (Test able A	nt SES Vari- nalyses) SD	Atti Comp Post	ltude osite test SD	Atti Compo Pret	tude osite , iest	Studen (Attitud able An	t SES e Vari- alysis)
36 28 87	7. 12 9	629.4 (86.3) 641.7 (102.4) 630.3 (103.8)	589.7 (7) 609.5 (8) 600.9 (9)	5.2) 8.6) 9.8)	618.2 610.8	(98.7) (100.8) (95.7)	596.7 589.5	· (89.8) (93.8)	107.5 105.7	(7.4) (8.8)	100.8 101.2	(6.4)	100.2 102.0	/ (7.1) (6.7)	107.3 105.9	50 (7.5) (8.8)
56 68	3 10	598.8 (85.7) 558.6 (91.5)	572.5 <u>(8</u> 541.3 (8)	0.2) 5,4)	593.8 564.7	(90.8) (101.2)	570.2 55 ¹⁴ .3	(95.7) (89.6) (94.7)	93.7 94.8	(11.9) (7.2) (8.3)	100.1 101.0 99.8	(6.7) (6.5) (7.2)	100.7 102.4 100.0	(6.0) (6.5) (6.6)	101.6 93.7 94.8	(12.1) (7.3) (8.5)
		588.2 (91.4)	574.6 (90	0.1)	584,3	(97,3)	585.8	(94.9)	96.8	(7.5)	97.9	(7.1)	¹ 99.8/	(6.8)	95.8	(7.1)

۲, ۲

60

. 11

A-15

٥

59.

Full Fact Provided By ERIC

1-13
1-13

Means (and Standard Deviations) by School for Selected Measures - Grade 12

·	Schoo1	Site	CTBS battery Total = Fosttest X SD	CTBS Battery Total - Pretest X SD	CTBS Arithmeti Computation Postiest X SD	c CTDS Arithmetic Computation Pretest X SD	Student SES (Test Vari- able Analyses) X SD	Attitude Composite Posttest X SD	Attitude Composite Pretest X & SD	Student SES (Attitude Vari- able Analysis) X SD
	22	1	644.7 (99.2)	627.0 (98.3)	611.7 (\$8.8	606.0 (108.0)	96.1 (8.2)	98.5 (7.0)	97.8 (7.1)	96.0 (8.4)
	28	12	693.1 (96.3)	679.4 (94.1)	639.0 (93.3)	638.5 (89.5)	103.7 (9.6)	101.8 (6.1)	101.2 (6.1)	103.2 (9.6)
	68 '	1Ŭ	634.9 (119.0)	636.5 (106.5)	608.7 (117.5)	608.1 (101.7)	98.2 (11.0).	101.1 (6.5)	100.9 (5.9)	98.1 (11.2)

A-16

61

ERIC

School	Site	% of School Year Prior to Pretest	% of School Year Prior to Posttest	No. of Days per School Year (?osttest)	No. of Days Prior to Posttest*	No. of Minutes per Day*	Total Time before Posttest in Hours*
90	13	76.7	78.9	1.80	142.0	147.5	349
74	2	^{75.0} /	73.3	180	131.9	210.0	462
26	12	71.5	84.5	200	169.0	200.0	563
·72	2	75.0	73.3	180	131.9	216.0	475
91	13	76.7	78.9	180	142.0	225.0	533
			· · · · · · · · · · · · · · · · · · ·				
93 _.	13	76.7	78.9	180	142.0	228.3	540
92	13	76.7	78.9	180	142.0	197.5	467
81	9	82.8	[.] 81.1	180	146.0	.205.0	499
79	9	82.8	81.1	180	146.0	180.0	438
71	2	75.0	73.3	180	131.9	120.0	264
	,	_		3	· · · · · ·	170 ³⁰ 1	(
25	12	71.5	84.5	200	169.0	260.0	732
59	11 ,	81.3	84.7	176	149.1	215.0	534
73	2	75.0	73.3	180	131.9	240.0	528

Mean Quantity of Schooling Measures by School - Grade 3

TABLE A-14

*For the posttest school year, 1972-73.

1.

Å-17

63

School	Site	% of School Year Prior to Pretest	% of School Year Prior to Posttest	No. of Days per School Year (Posttest)	Nr. & Days Prior to Posttest*	No. of Minutes per Day ⁴	Total Time before Posttest in Hours [*]
9	1	66.7	66.5.	18?	121.0	, 195.0	393
30	4	81.7	81.1	18)	146.0	240.0	584
32	7.	, 71.0	73.0	173	129.9	.70.0	585
33	7	71.0	73.0	173	129.9	235.0	509
· 2	5	81.7	81.1	- 18)	146.0	240.0	584
92	13	76.7	78.9		142.0	197.5	467
74	2	75.0	73.3	18)	131.9	210.0	462
63	10	_ 75.0	75.3	173	134.0	. 300.0	670
7	1	66.7	66.5	182	121.0	225.0	454
34	- 7	71.0	73.0	173	129.9	215.0	465
		· · · ·				·	
91	13	76.7	78.9	18)	142.0	225.0	533
17	1	66.7	66.5	182	121.0	225.0	454
96	6	78.3	78.3	180	140.9	245.0	575 /
1	5	81.7	81.1	181	146.0	245.0	596
8.	1	66.7	66.5	182	121.0	240:0	484
19	1	66.7	, 66.5	182	121.0	245.0	. 494
73	2	75.0	73.3	180 .	131.9	240.0	528
15	1	66.7	66.5	182	121.0	225.0	454
97	6 ·	78.3	78.3	18)	140.9	220.0	517
64	10	75.0	75.3	- 178	134.0	280.0	625

Mean Quantity of Schooling Measures by School - Grade 6

TABLE A-15

ά

2

.

(continued)

66

.65

TABLE	A-10	(continued)	
		,	

Schoo1	Site	% of School Year Prior to Pretest	% of School Year Prior to Posttest	No. of Days per School Year (Posttest)	No. of Days Prior to Posttest	No. of Minutes per Day*	Total Time before Posttest in Hours ⁺
99	6	78.3	78.3	180	9120.9	149 0	250
10	1	66.7	66.5	182	121.0	215.0	1 J.J.O
27 [.]	12	71.5	84.5	200	169.0	223.2	434 620
3	8	83.3	80.8	182	147.1	225.0	552
72	2	75.0	73.3	180	131.9	228.0	501
90 1	13	76.7	78.9	180	142.0	140.0	331
59	11	-81-3	84.7	175	149.1	226.0	562
98	6	78.3	78.3	18)	140.9	220.0	517
93	13.	76.7	78.9	18)	142.0	227.5	538
71	2	75.0	73.3		131.9	120.0	7264
81	9	82.8	81.1	13)	146.0	247.5	602
55	3	79.4	78.3	180	140.9	240.0	564
61	11	81.3	84.7	176	149.1	197.5	491
79	9	82.8	81.1	180	146.0	210.0	511

*For the posttest school year, 1972-73.

1

A-19

67

ERIC.

/#

ĩ

١

TABLE	A-	16`	
-------	----	-----	--

į,

Mean	Quantity	of	Schooling	Measures	by-	School	-	Grade	7
------	----------	----	-----------	----------	-----	--------	---	-------	---

School	Site	Z of School Year Prior to Pretest	% of School Year Prior to Postcest	No. of Days per School Year (Posttest)	No. of Days Prior to Posttest*	No. of Minutes per Dav	Total Time before Posttest in Hours*
31	4	81.7	81.1	180	146.0	2010	4.97
- 89	5	81.7	81.1	180	146.0	200.0	407
60	11	81.3	84.7	176	149.1	181.0	
85	9	82.8 ·	81,1	180	146.0	180.0	6.38
4	8	83.3	80.8	182	147.1	220.0	539
	<u>. </u>			· · · · · ·		•	
86	9	82.8	* 81.1	180	:146.0	240.0	584
61	11	81.3	84.7	176	149,1	183.5	456
55	3	79,4	78,3	180	140.9	/ 240.0	564
97	6	,78.3	78.3	180	140.9	210.0	493
94	13	76.7	78.9	180	142.0	200.0	473
	11	· · ·	· 				<u> </u>
27	12	71.5	84.5	200	169.0	223.2	. 629
20	1	66.7	.66.5	182,	121.0	200.0	403
·67	10	75.0	75.3	178	134.0	240.0	536
35	7	71.0	73.0	178 .	129.9	108.0	234
24	6	78.3	78,3	180	140.9	216.0	507
<u> </u>		······	· · · ·			·	
93	6	78.3	78.3	180	140.9	200.0	470
21	1	66.7	66.5	182	121.0	200.0	403
76	2	75.0 /	73.3	180	131.9	240.0	528
75	2	75.0⁄	73.3	180	131.9	270.0	594
		<u>:/</u>	•				

70

*For the posttest school year, 1972-73.

A-20 4

School	Site	% of School Year Prior to Pretest	% of School Year Prior to Posttest	No. of Days per School Year (Posttest)	No. of Days Prior to Posttest*	No. of Minutes per Day [%]	Total Time before Posttest in Hours [*]
36	7	71.0	73.0	178	129.9	180.0	390
28	12	[°] 71.5	84,5	200	169.0	240.0 -	676
87	9	82.8	81.1	180 .	146.0	240.0	584
56	3	79:4	78.3	180	140.9	240.0	564
68	10	, 75.0	75.3	178	134.0	236.7	529
22	1	66.7	° 66.5	182	121.0	165.0	333

TABLE A- 17

Mean Quantity of Schooling Measures by School - Grade 10

*For the posttest school year, 1972-73.

72

3 A−2 T

ERIC.

Schoo1	Site	% of School Year Prior to Pretest	% of School Year Prior to Posttest	No. of Days per School Year (Posttest)	No. of Days Prior to Posttest*	No. of Ninutes per Day [¥]	Total Time before Posttest in Hours [*]
22	1	66.7	66.5	182	121.0	147.0	296
28	12	71.5	84.5	200	169.0	240.0	676
68	10	75.0	75.3	178	134.0	236.7	529

74

TABLE A-18

Mean Quantity of Schooling Measures By School - Grade 12

*For the posttest school year, 1972-73.

A-22

73

ERIC

TABLE	A-19
-------	------

Average Treatment Attributes by School - Grade 3

	School	Site	Level of Innovation	Degree of Individual- ization	Individual- ization in Decision- Making	Individual- ization of Instructional Pace	Use of Performince Agreemails	Utilization of Student Evaluation	Scheduling Charac- teristics	Classroom Group Organ- ization	Affective Evaluation	Treatment Years for the Grade
	• 90	13	. 13.7 .	5.2	1.2	2.0	1.1	1.0	1.0	2.0	1.0	- 1.5
	74	2	14.8	6.3	1.0	2.0	2,4	2.3	1.0	2.0	1.0	3.0
	26	12	24.7	10.2	2.2	e 2.8	5	3.0	2.0	2.0	2.0	2.0
	72	2	22.0	8.0	1.0	2.0	<u>]</u> .()	2.0	2.0	2.0	1.0	2.0
A	<u>91 -</u>	_13	19.5		1.0	2.()	2.0	<u> </u>	1.0	2.0	1.0	1.3
ω	93	13-	18.8	7.3	1.7 .	2.0	1.0	2.7	2.0	2.0	1.0	1.0
	92	- 13	22.1	8.3	2.0	3.6	1.5	1.8	2.5	3.0	· 1.0	3.0
	81	9	17.2	6.3	1.0	1 %	1.0	2.4	1.1	2.9	. 140	1.9
	79	9	18.7	6.7	1.9	·.0	. 1.0	2.3	2.0	3.0	1.0	1.0
	71	2	25.2	9.7	2.0	2.0	3.0	2.1	3.0	3.0	1.0	⁵ .0
	25	12	22.8	8.4	1.7	- 1.8	2.0	3.0	2.0	2.0	2.0	1.8
Ì	59	\mathbf{n}	18.3	6.5	1.0	2.0	1.0	2.5	1.0	1.5	1.0	· 2.8
	73 -	2	\$2.5	10.0	2.0	3.0	3.0	2.0	2.0	3.0	1.0) d

School	Site	Level of Innovation	Degree of Individual- ization	Individual- ization in Decision- Making	Individual- ization of Instructional Pace	Use of Performance Agreements	Utilization of Student Evaluation	Scheduling Charac- teristics	Classroom Group Organ- ization	Affective Evaluation	Treatment Years for the Grade
9	1	19.5	7.3	1.7	2.0	2.0	1.7	2.0	2.0	1.0	6.0
30	4	19.2	7.6	· 1.0	2.0	2.3	2.3	1.0	2.3	1.0	1.0
32	7	20.1	7.6	3.2	2.0	1.8	2.7	1.0	2.0	1.0	3.0
33	7	19.8	8.0	1.2	2.0	2.0	2.8	1.8	2.0	3.0	3.8
2	.5	11.2	4.7	1.0	1, 3	1.0	1.7	1.0	1.0	1.0	1.0
92	13	22.1	8.3	2.0	3.0	1.5	1.8	2.5	3.0	1.0	4.0
74	2	14.8	6.3	1.0	2.0	1.0	2.3	1.0	2.0	1.0	6.0
63	10	20.7	8.5	1.4	2.5	2.3	2.3	⁻ 1.5	2.8	1.5	1.8
7	1	19.6	7,3	1.5	2.0	1.0	2.8	1.8	2.3	3.0	3.3
34	7	20.7	7.8	1.2	, 1.9	2.4	2.4	2.1	2.1	1.3	1.5
91	13	19.5	7.7	1.0	2.0	2.0	2.7	1.0	2.0	1.0	1.3
17	, 1 '	19.8	7.7	1.0	2.0	2.0 ′	2.7	2.0	2.0	1.0	1.0
96	6	13.3	5.3	1.0	1.0	1.0	2.3	2.0	2.0	1.0	6.0
1	5	13.4	5.4	1.0	1.3	1.3	1.9	1.0	1.5	1.0	1.8
8	1	16.8	7.7	1.0	2.0	2.0	2.7	1.0	1.0	1.0	2.0
19	1	17.8	6.4	1.3	2.0	1.0	2.2	2.0	2.0	1.0	1.3
73	2	23.5	10.0	2.0	3.0	3.0	2.0	2.0	3.0	1.0	3.0
15	I	19.2	8.0	1.5	2.0	1.8	2.8	1.0	2.3	1.5	3.3
97	6	11.2	4.7	1.0	1.0	1.0	1.7	1.0	1.0	1.0	2.0
64	10	20.9	8.3	1.4	2.5	2.3	2.2	1.8	2.8	1.5	2.0
		i		· · · · · · · · · · · · · · · · · · ·	1	. 1					

Average Treatment Attributes by School - Grade 6

TABLE A- 20

A-24

77

(continued)

78

ERIC Petitiene

;

Schoo1	Site	Level of Lunovation	Degree of Individual- ization	Individual- ization in Decision- Making	Individual- ization of Instructional Pace	Use of Performance Agreements	Utilization of Student Evaluation	Scheduling Charac- teristics	Classroom Group Organ- ization	Affective Evaluation	Treatment Years for the Grade
99	6.	13.5	5.3	1.0	1.0	,	2 3	1.0	1.0		
10	1	21.8	7.3	1.6	1.8	1.0	3.0	1.0	1.0	1.0	6.0
27	12	22.6	8.9 /	1.6	2.4	2.3	27	20	2.0	1.0	1.5
3	8	22.8	10.3	1.3	`3. 0	3.0	-3.0	1.0	3.0	2.0	1.0
72	• 2	18,8	7.7	1.0	2.0	2.0	2.7	2.0	2.0	1.0	5.0 6.0
90	13	16.0	5.2	1.2	2.0	1.0	1.0		2 5		
59	$ \mathbf{n} $	18.3	6.5	1.0	Z.0	1.0	2.5	1.0	4.5 1 c	1.0	2.0
98	6	12.2	4.7	1.0	1.0	1.0	1.7	1.0	210	1.0	4.8
93	13	18.8	7.3	1.7	2.0	1.0	2.7	2.0	2.0	1.0	2.0
71	2,	25.2	9.7	2.0	2.0	3.0	2.7	3.0	3.0	1.0	1.0 3.0
81	9, 1	18.8	6.7	1.1	1.6 ,	1.4	2.6	1.0	21		
55	3	21.4	8.4	1.4	3.0	1.0	3.0	1.3	1 2	1.0	1.0
61	11	13.6	4.7	1.1	1.0	1.3	1.3	1.0	1.5	1.0	1.0
79	9	16.7	. 5.7	1.3	1.0	1.0	2.3	2.0	2.0	1.0	1.U 2.0 .

80

TABLE A-20 (continued)

A-25

79

ERIC Full Exet Provided By ERIC

Schoo1	Site	Level of Innovation	Degree of Individual- ization	Individual- ization in Decision- Making	Individual- ization of Instructional Pace	Use of Performance Agreements	Utilization of Student Evaluation	Scheduling Churac- teristics	Classroom Group Organ- ization	Affective Evaluation	Treatment Years for the Grade
31	4	18.8	7.5	1.0	2.0	2.3	2.3	1.0	2.5	1.0	
5 9	5	12.2	4.7	1.0	1.0	1.0	1.7	2.0	1.0	1.0	1.0
60	11 -	14.9	5.8	1.3	1.3	1.9	2.3	1.0	1.0	1.0	1.0
85 -	9	21.1	6.8	1.2	1.5	1.8	2.3	2.3	2.0	1.0	1.0
4	8	11.0	5.0	1.0	1.0	1.0	2.0	1.0	1.0	1.00	1.0
86	9	11.7	4.5	. 1.1	1.0	1.0	1.4	1.0	1.0	1.0	1.0
61	11	15.3	5.4	1.3	1.4	.1.0	1.7	1.0	1.8	1.0	1.0
·55	3	19.5	7.8 .	1.4	2.5	1.0	2.8	1.3	1.3	• 1.0	1.8
97	6	11.2	4.7	1.0	1.0	1.9	1.7	l		1.1	
94	13	16.3	5.8	1.0	1.4	2.4	1.0	1.0	2.5	1.0	1.0
27	12	22.7	8.9	1.6	2.4	, 2.3	2.7,	2.0	1.9	2.0	1.0
20	1	19.2	8.3	1.4	1.9	2.1	2.9	1.0	2.1	1.0	1.3
67	10	18.8	7.6	1-3	2.5	1.8	2.1	.1.'0	2.1	1.0	1.0
35	7	21.5	8.0	1.0	2.0	2.0	3.0	3.0	2.0	1.0	1.0
	6	12.8	5.3	1.0	1.0	1.0	2.3	1.0	1.5	1.0	1.0
98	6	12.2	4.7	1.0	1.0	1.0	• 1.7	1.0	2.0	1.0	2.0
21	1	18.6	7.0	1.3	1.8	1.8	2.]	1.0	2.3	2.2	1.0
76	2	14.5	5.7	a 1.0	1.0	1.5	2.2	1.0	1.5	1.0	1.0
75	2	16.3	6.6	1.0	1.5	1.6	2.5	1.0	1.9	1.3	1.0

TABLE A- 21

Average Treatment Attributes by School - Grade 7

81

82

School	Site	School - Classroom Design	Use of Materials	Classroom Environ- ment	Study Arrange- ments	Access to Resources	Teacher/Student Contact Hour Ratio	Aide/Student Contact Hour Ratio	Volunteer/ Student Contact Hour Ratio	•Teacher Inservice Training
90	13	1.0	2.2	2.0	2.1	2.0	3.9		. 1.9	1.0
74	2	1.0	1.7	2.7	1.8	2.3	3.5			1.0
26	12	2.5	2.4	2.7%	3.0	3.0	5.0	1.6	1.6	3.0
72	2	1.0	2.1	2.0	.2.8	2.7	3.0	2.6		3.0
91	13	1.0	2.6	1.3	2.0.	3.0	3.1	0.8	1.5	1.0
	·····			<u>}</u>	• •	,				
93	13	3.0	2.4	2,3	2.2	3.0	4.7	2.3	2.5	2.5
92	13	1.0	3.0	2.7	3.0	3.0	3.6	3.3	1.9	3.0
81	9	2.5	2.4	* 3.0	2.4	3.0	3.2			3.0
79	9	2.5	2.1	2.3	2.0	3.0	3.3	3.3		3.0
71	2	1.0	2.0	2.3	2.7`	3.0	3.3			2.0
										·-···
25	12	3.0	2.6	2.7	2.7	3.0	6.7	1.5	2.7	1.0
59.	11	1.0	2.1	2.0	1.8	2.3	3.0	2.3	2.3	2.0
73	2	3.0	2.4	2.5	2.7	2.7	3.5	0.9		3.0

Average Resource Variables By School - Grade 3

TABLE A-22

A-27

83

ERIC.

								÷ .		•
School	Site	School - Classroom Design	Use of Materials	Classroom Environ- ment	Study Arrange- ments	Access to Resources	Teacher/Student Contact Hour Ratio	Aide/Student Contact Hour Ratio	Volunteer/ Student Contact Hour Ratio	Teacher Inservice Training
9	1	1.5	1.7	2.0	1.7	2,3	3.4	3.4	·	2.0
30	4	1.0	2.5	2.0	1.7	3.0	4.2	3.5	'	2.5
32	1	1.0	2.0	1.8	1.7	1.7	3.3	1.6	- ,	2.0
33	7	1.0	1.5	2.0	1.8	1.5	3.5		1.3 /	2.0
2	5	1,0	2.0	1.3	1.7	3.0	4.4			1.0
92	13	1.0	3.0	2.7	3.0	3.0	3.6	3.3	1.9	3.0
74	2	1.0	1.7	2.7	1.8	2.3	3,5		'	1.0
63	10	- 1.0	2.2	2.0	1.5	2.2	3.6	1.1		2.5
7	1	2°.1	2.9	3.0	2.7	2.8	3.3			2.0
34	7	2.5	1.6	1.8	2.2	2.3	3.0	1.1		2.0
- 91	13	1.0	2.6	1.3	2.0	3.0	3.1	0.8	1.5	1.0
17	1	.1.0	2.0	2.0	2.0	3.0	5.0	2.6		2.0
96	6	1.0	2.0	2.0	1.7	3.0	3,6	·		1.0
1.	5	1.0	2.1	1.3	2.2	3.0	5.1			1.5
8	1	2.5	1.6	· 1.7 ·	2.0	1.7	3.3		· .	2.0
-19	1	1.5	2.1	2.0	1.7	3.0	3.9	,		2.0
73	2	3.0	2.4	2.5	2.7	2.7	3.5 **	0.9		3.0
15	1	1.0	2.6	2.3-	2.5	3.0	3.7,			2.0
97	6	1.0	1.9	2.3	1.7	3.0	5.0			1.0
64	10	1.0	2.2	2.0	1.5	2.2	3.6	1.1	1	2.3
							,		•	,

lvèrage	Resource	Variables	₿y	School	-	Grade I	6	
---------	----------	-----------	----	--------	---	---------	---	--

TAPLE A-23

ب الشم

A-28

85

36

•.

(continued)

School	Site	School - Classroom Design	Use of Materials	Classroom Environ- ment	Study Arrange-	Access to Resources	Teacher/Studiac Contact Hour Ratio	ta / /Student utact	Volunteer/ Student Gontact Hout Ratio	Teacher Inservice Training
99	6	1.0	1.9	2.0	1.5	3.0	4.0			
10	1	1.0	2.0	2.0	2.7	3.0	4.0	65		1.0
27	· 12 ·	2.0	2.3	2.7	2.2	2.8	3.6	, , , ,		2.5
3´	8	1.0	2.8	2.7	2.8		3.0	,		3.0
72	2	1.0	2.0	2.0	2.0	2.7	3.5		41 an ap	1.0
90	13	i.8	1.9	1.8	2.0	2.0	3.9	1.3	1.3	1.0
59	41	i.0	2.1	2.0	1.8	2.2	3.0	- 2.3	2.3	2.0
98	5	1.0	2.0	2.0	1.7	2.8	3.6		 -	1.0
93	13	3.0	2.4	2.7	2.7	3.0	4.8		2.5	2.5
\hat{n}	2	1.0 ;	2.0	2.3	2.7	3.0	3,3			2.0
	•		·		1	. 1	ļ			
81 -	9	2.6	2.5	2.5	2.2	3.0	2.9	2.1		î.0
55	3	1.0	. 2.0	2.0	1.3	2.7.	3,0	2.2		1.0
61	11	1.4	2.0	2.2	-1.7	2. ^r	3.3		- *-	2.0
79	9	2.5	2.1	2.2	1.8	3.0	3,2	1.8		3.)
(١.,							\ ·

TABLE A-23 (continued)

A-X9

87

ERIC.

TABLE A-24

Average Resource Variables By School - Grade 7

	School	Site	School - Classroom Design	Use of Materials	Classroom Environ- ment	Study Arrange- ments	Access to Resources	Teacher/Student Contact Hour Ratio	Aide/Student Contact Hour Ratio	Volunteer/ Student Contact HoureRatio	Teacher Inservice Training
	31	, Å	1.0	2.3	1.7	1.0	3.0			-	
	89	5	1.0	18	2.2	1.0	, J.U קר ל	J+7	3.1		2.5
	60	11		1.0	1 2.2	1.7	2.1	4.2			
	Q5 '1	1,1	2.0	1,2	1.0	1.7	1.5	3.4			2.0
	, CO 1	, ,	2.5	1.9	2.8	2.2	• 2.2	3.7	2.0		2.0
	4	ō	1.0/		2.0	1.3	2.3	5.0			· 1.0
					· · ·	1			·		
	86	9	1.0	1.4	2.0	1.7	1.0	3.3			2.0
	61	11	1.0	i. <i>1</i>	2.5	1.7	2.3	3.3			2.0
	55	3	1.0	2.0	2.0	1.3	2.7	3.0	2.2		1.8
	97	6	1.0	1.9	2.3	1.7	3.0	5.0			1.0
	94	[°] 13	2.0	2.0	2.0	- 2.3	2.2	3.9	2.8	3.9	1.0
i		• • • •		·····							•
	~~	10								\$	
	2/	12	2.0	2.3	2.7	2.2	2.8	3::6	. 1.4 .	<u>א</u> ,	3.0
	20	1	1.0	1.8	2.9	1.8	2.3	3.3		4.0	2.3
	67	10	1.0	1.8	2.2	2.2	2.6	4.1	4.6		2.3
	35	7	2.5	1.4	2.7.	1.8	2.0	2.9	1.4		2.0
	24	6	1.0	1.6	1.7	1.5	2.3	3.9			1.0
					· · ·		· · · · ·				
	98	6	1.0	2.0 ·	2.0	1.7	2.8	3.6			1.0
	21'	1	1.2	2.0	2.1	2 2		· · · · · · · · · · · · · · · · · · ·	, , , ,		1.0
	76	2	1.0	1.5	2 9	1 7	· · · ·	2.4° '	0 . 0	 '	2.0
4	75	, ,	1. 10	10	2.0	1./ 1.2	2.3	ملارد			1.3
	, , , , , ,	-	T'0	1.7	2.4	2.5	2.1	3.5	4.5	,	1.5.
F	, I		b i	I	<u> </u>		•	· · · · · · · · · · · · · · · · · · ·			

. 90

89

.

A-30

ERIC

ATTACHMENT B

92

ERIC TREVIEWS BY ERIC . 93